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Abstract 
In this paper we study the local uniqueness of solutions to the Boltzmann equation with an 
external force term. Assuming the existence of solutions, we prove a local uniqueness result 
by applying a fixed point theorem of Hardy–Rogers. The collision operator is assumed to be 
bilinear, symmetric, and non-continuous, which allows extending previous results that require 
continuity assumptions. The obtained conditions contribute to the uniqueness theory for 
Boltzmann-type equations with force terms. 
Keywords: Boltzmann equation, force term, fixed point, non-continuous operator, Hardy–
Rogers theorem. 
 

1 INTRODUCTION 
 
Consider the following problem: let it be 

𝑓: [0, 𝑇] × Ω × ℝ𝑛 → ℝ+ 
 
that satisfies the equation distributionally: 

{

∂𝑓

∂𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 + 𝑡

∂𝐹

∂𝑡
⋅ ∇𝑣𝑓 = 𝑄(𝑓, 𝑓),

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣).
(1) 

 

Where ,𝑡 ∈ [0, 𝑇] 
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ Ω ⊂ ℝ𝑛 

and .𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) ∈ ℝ𝑛 
Here 

𝐹: [0, 𝑇] × ℝ𝑛 × ℝ𝑛 → ℝ𝑛 
 
it is an external vector field that is supposed to be differentiable with respect to time. 

𝑄(𝑓, 𝑔)(𝑥, 𝑣)is an operator of and we assume that it is bilinear, symmetrical and not 

continuous.ℝ𝑛 × ℝ𝑛 → ℝ 
The operator 

𝑄(𝑓, 𝑔)(𝑣) =
1

2
∫ ∫ 𝑞(𝑣, 𝜃)[𝑓(

∣𝑤∣=1
ℝ𝑛

𝑣′)𝑔(𝑢′) + 𝑓(𝑢′)𝑔(𝑣′) − 𝑓(𝑣)𝑔(𝑢) − 𝑓(𝑢)𝑔(𝑣)] 𝑑𝑢 𝑑𝑤, (2) 

 
The theory of Boltzmann's equation is a special case of (1), since it is symmetrical, bilinear and 
not continuous. In this sense, we will use a more general operator than the one used in 
Boltzmann's equation theory. 
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Functional space 
Consider functional space 

𝐵 = {𝑓 ∈ 𝐿1([0, 𝑇] × Ω × ℝ𝑛):
∂𝑓

∂𝑥𝑖
∈ 𝐿1([0, 𝑇] × Ω × ℝ𝑛),

∂𝑓

∂𝑣𝑖
∈ 𝐿1([0, 𝑇] × Ω × ℝ𝑛)} 

 
with 

∥ 𝑓 ∥𝐵=∥ 𝑓 ∥𝐿1([0,𝑇]×Ω×ℝ𝑛)+∥
∂𝑓

∂𝑥𝑖
∥𝐿1+∥

∂𝑓

∂𝑣𝑖
∥𝐿1 , 

 
and 

∥ 𝑓 ∥𝐿1([0,𝑇]×Ω×ℝ𝑛)= ∫ ∫∫ ∣ 𝑓(𝑡, 𝑥, 𝑣) ∣  𝑑𝑡 𝑑𝑥 𝑑𝑣.
ℝ𝑛

Ω

𝑇

0

 

 

We will assume that , and𝑓0(𝑥, 𝑣) ∈ 𝐵𝑚(Ω) < ∞ 

∫ 𝑑𝑣 < ∞.
ℝ𝑛

 

 
 
Particular cases of the differential equation (1) 

a) If , then (1) boils down to𝐹 = 0 
∂𝑓

∂𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 = 𝑄(𝑓, 𝑓), 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣), 

 
which is the classic Boltzmann equation. 

b) If and is not time-dependent (stationary field), then (1) reduces to𝐹 ≠ 0 
∂𝑓

∂𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 = 𝑄(𝑓, 𝑓), 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣), 

 
which is the classic differential equation with the term force. 
If we assume that solutions exist, we are interested in obtaining local uniqueness from them. 
 
2 State of the art 
The purpose of this article is to look for uniqueness conditions for the equation 

∂𝑢

∂𝑡
+ 𝑣 ⋅ ∇𝑥𝑢 + 𝐹 ⋅ ∇𝑣𝑢 + 𝑡

∂𝐹

∂𝑡
⋅ ∇𝑣𝑢 = 𝑄(𝑢, 𝑢), 

 

with the initial condition .𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣) 
Some studies of this problem with the term are found in [1], where existence and uniqueness 
are shown in local conditions. Asano K. (1987) extends the conditions to global 
considerations. In [2] Bellomo N. et al. (1989), all have conditions close to equilibrium and 
conservative force fields. In [3], Galeano R. (2007) existence and uniqueness theorems were 

proved for as a continuous operator. And in [7], Renjun D. et al.𝐹 ⋅ ∇𝑣𝑢𝑄 
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Here we will use a fixed-point theorem when the operator is non-continuous of the Hardy–
Rogers type [5], presented in [6] by Pathak H. (2018). We consider the theorem a contribution 
to the theory of uniqueness of solutions in differential equations. 
Here we prove the following theorem: 
 
Theorem 1 
Be 

𝐹:ℝ𝑛 × ℝ𝑛 → ℝ𝑛  
 
differentiable with respect to time, be it 

0 < 𝑡 < √
1

8 + 2𝑘 𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

, 

 

with ,𝑘 > 0 

∫ 𝑑𝑣 < ∞,
ℝ𝑛

𝑚(Ω) < ∞, 

 

and a bilinear, symmetrical, non-continuous operator with𝑄(⋅,⋅) 
𝑄 ∈ 𝐿1(ℝ𝑛 × ℝ𝑛). 
Then there is a single local solution to the problem (1). 
 
3 Development 
Be 

𝑓#(𝑡, 𝑥, 𝑣) = 𝑓(𝑡, 𝑥 + 𝑣𝑡, 𝑣 + 𝑡𝐹). 
 
From this we have to: 

𝑓(𝑡, 𝑥, 𝑣) = 𝑓#(𝑡, 𝑥 − 𝑣𝑡, 𝑣 − 𝐹𝑡), 
∂𝑓#

∂𝑡
=
∂𝑓

∂𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 + 𝑡

∂𝐹

∂𝑡
⋅ ∇𝑣𝑓 = 𝑄(𝑓#, 𝑓#), 

 
then 

∂𝑓#

∂𝑡
= 𝑄(𝑓#, 𝑓#). 

 
Now, 

𝑓#(0, 𝑥, 𝑣) = 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣), 
 

for any , .𝑥 ∈ Ω𝑣 ∈ ℝ𝑛 

How, then𝑄 ∈ 𝐿1(Ω × ℝ𝑛) 

𝑓#(𝑡, 𝑥, 𝑣) = 𝑓#(0, 𝑥, 𝑣) + ∫ 𝑄(
𝑡

0

𝑓#, 𝑓#) 𝑑𝜏. (3) 

Let's consider two solutions of the above equation 

𝑓1
#(𝑡, 𝑥, 𝑣) and define𝑓2

#(𝑡, 𝑥, 𝑣) 
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𝑔#(𝑡, 𝑥, 𝑣) = 𝑓1
#(𝑡, 𝑥, 𝑣) − 𝑓2

#(𝑡, 𝑥, 𝑣). 
 
Then 

𝑓1
#(𝑡, 𝑥, 𝑣) = 𝑓2

#(𝑡, 𝑥, 𝑣) + 𝑔#(𝑡, 𝑥, 𝑣), 
 
and 

𝑔#(0, 𝑥, 𝑣) = 𝑓1
#(0, 𝑥, 𝑣) − 𝑓2

#(0, 𝑥, 𝑣) = 0, 
 
I mean 

𝑔#(0, 𝑥, 𝑣) = 0. 
 

Since and are solutions of equation (3), it has to be𝑓1
#(𝑡, 𝑥, 𝑣)𝑓2

#(𝑡, 𝑥, 𝑣) 

𝑓1
#(𝑡, 𝑥, 𝑣) = 𝑓1

#(0, 𝑥, 𝑣) + ∫ 𝑄(
𝑡

0

𝑓1
#, 𝑓1

#) 𝑑𝜏, 

 
and 

𝑓2
#(𝑡, 𝑥, 𝑣) = 𝑓2

#(0, 𝑥, 𝑣) + ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏. 

 
Then 

𝑔#(𝑡, 𝑥, 𝑣) = ∫ 𝑄(
𝑡

0

𝑓2
# + 𝑔#, 𝑓2

# + 𝑔#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏. 

 

Let's define the operator in𝐽 
𝐿1([0, 𝑇] × Ω × ℝ𝑛) 

𝐽(𝑔#) = ∫ 𝑄(
𝑡

0

𝑓2
# + 𝑔#, 𝑓2

# + 𝑔#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏. 

𝐽: 𝐿1([0, 𝑇] × Ω × ℝ𝑛) ⟶ 𝐿1([0, 𝑇] × Ω × ℝ𝑛). 
 

Suppose that ,he is the .𝐽(𝑔#) ∈ 𝐵 ⊂ 𝐿1([0, 𝑇] × Ω × ℝ𝑛)0 ∈ 𝐵0 ∈ 𝐿1([0, 𝑇] × Ω × ℝ𝑛) 
0is a fixed point of , since𝐽 

𝐽(0) = ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏 = 0. 

 
Let's verify that zero is the only fixed point of by means of a Hardy–Rogers fixed-point 

theorem, concluding that𝐽 

𝑔#(𝑡, 𝑥, 𝑣) ≡ 0 and therefore 

𝑓1
#(𝑡, 𝑥, 𝑣) = 𝑓2

#(𝑡, 𝑥, 𝑣). 
Suppose that ,𝐽(𝑔#) ∈ 𝐵 ⊂ 𝐿1([0, 𝑇] × Ω × ℝ𝑛) 
0 ∈ 𝐵 is the .0 ∈ 𝐿1([0, 𝑇] × Ω × ℝ𝑛) 
Consider ,ℎ#(𝑡, 𝑥, 𝑣) ≥ 𝑔#(𝑡, 𝑥, 𝑣) 
ℎ# ≥ 𝑔# and evaluate: 
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𝐽(𝑔#) − 𝐽(ℎ#) = ∫ 𝑄(
𝑡

0

𝑓2
# + 𝑔#, 𝑓2

# + 𝑔#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏

−∫ 𝑄(
𝑡

0

𝑓2
# + ℎ#, 𝑓2

# + ℎ#) 𝑑𝜏 + ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏.

 

 
This is 

𝐽(𝑔#) − 𝐽(ℎ#) = ∫ 𝑄(
𝑡

0

𝑓2
# + 𝑔#, 𝑓2

# + 𝑔#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
# + ℎ#, 𝑓2

# + ℎ#) 𝑑𝜏. 

 
Developing, 

𝐽(𝑔#) − 𝐽(ℎ#) = ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏 + ∫ 𝑄(
𝑡

0

𝑓2
#, 𝑔#) 𝑑𝜏 + ∫ 𝑄(

𝑡

0

𝑔#, 𝑓2
#) 𝑑𝜏 + ∫ 𝑄(

𝑡

0

𝑔#, 𝑔#) 𝑑𝜏

−∫ 𝑄(
𝑡

0

𝑓2
#, 𝑓2

#) 𝑑𝜏 − ∫ 𝑄(
𝑡

0

𝑓2
#, ℎ#) 𝑑𝜏 − ∫ 𝑄(

𝑡

0

ℎ#, 𝑓2
#) 𝑑𝜏 − ∫ 𝑄(

𝑡

0

ℎ#, ℎ#) 𝑑𝜏.

 

 
So, 

𝐽(𝑔#) − 𝐽(ℎ#) = 2∫ 𝑄(
𝑡

0

𝑓2
#, 𝑔#) 𝑑𝜏 + ∫ 𝑄(

𝑡

0

𝑔#, 𝑔#) 𝑑𝜏

−2∫ 𝑄(
𝑡

0

𝑓2
#, ℎ#) 𝑑𝜏 − ∫ 𝑄(

𝑡

0

ℎ#, ℎ#) 𝑑𝜏.

 

 
The above is true since 

𝑄(2𝑓2
#, 𝑔#) = 𝑄(𝑓2

# + 𝑓2
#, 𝑔#) = 𝑄(𝑓2

#, 𝑔#) + 𝑄(𝑓2
#, 𝑔#) = 2𝑄(𝑓2

#, 𝑔#). 
 
Then, 

𝐽(𝑔#) − 𝐽(ℎ#) = ∫ 𝑄(2
𝑡

0

𝑓2
#, 𝑔# − ℎ#) 𝑑𝜏 + ∫ 𝑄(

𝑡

0

𝑔# − ℎ#, 𝑔# + ℎ#) 𝑑𝜏. 

 
This is 

𝐽(𝑔#) − 𝐽(ℎ#) = −∫ 𝑄(2
𝑡

0

𝑓2
#, 𝑔# − ℎ#) 𝑑𝜏 − ∫ 𝑄(

𝑡

0

𝑔# − ℎ#, 𝑔# + ℎ#) 𝑑𝜏. 

 

Since it is a non-continuous operator, then there is a such that𝑄𝑘 > 0 

𝑄(ℎ# − 𝑔#, 𝑝) > 𝑘(ℎ# − 𝑔#), 
 

for any .𝑝 ∈ 𝐵 
 

For any one you have to𝑝 ∈ 𝐵 

− 𝑄(ℎ# − 𝑔#, 𝑝) < 𝑘(𝑔# − ℎ#), 
 
then 
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𝐽(𝑔#) − 𝐽(ℎ#) < 𝑘∫ (
𝑡

0

𝑔# − ℎ#) 𝑑𝜏 + 𝑘∫ (
𝑡

0

𝑔# − ℎ#) 𝑑𝜏. 

 
Therefore, 

∣ 𝐽(𝑔#) − 𝐽(ℎ#) ∣< 𝑘∫ ∣
𝑡

0

𝑔# − ℎ# ∣  𝑑𝜏 + 𝑘∫ ∣
𝑡

0

𝑔# − ℎ# ∣  𝑑𝜏 < 2𝑇𝑘∫ ∣
𝑡

0

𝑔# − ℎ# ∣  𝑑𝜏. 

 
So, 

∥ 𝐽(𝑔#) − 𝐽(ℎ#) ∥𝐿1([0,𝑇]×Ω×ℝ𝑛)< 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣[∥
ℝ𝑛

ℎ# − 𝐽(ℎ#) ∥𝐿1 +

∥ 𝐽(ℎ#) − 𝐽(𝑔#) ∥𝐿1 +∥ 𝐽(𝑔
#) − 𝑔# ∥𝐿1]. 

 
I mean 

∥ 𝐽(𝑔#) − 𝐽(ℎ#) ∥𝐿1 < 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣  ∥
ℝ𝑛

ℎ# − 𝐽(ℎ#) ∥𝐿1

+2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣  ∥ 𝐽(
ℝ𝑛

ℎ#) − 𝐽(𝑔#) ∥𝐿1

+2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣  ∥ 𝐽(
ℝ𝑛

𝑔#) − 𝑔# ∥𝐿1 .

 

 
Then, 

(1 − 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣) ∥ 𝐽(
ℝ𝑛

𝑔#) − 𝐽(ℎ#) ∥𝐿1< 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣(∥
ℝ𝑛

ℎ# − 𝐽(ℎ#) ∥𝐿1 +

∥ 𝐽(𝑔#) − 𝑔# ∥𝐿1). 
 
Therefore, 

∥ 𝐽(𝑔#) − 𝐽(ℎ#) ∥𝐿1<
2𝑘𝑇2

1 − 2𝑘𝑇2𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

∥ ℎ# − 𝐽(ℎ#) ∥𝐿1+
2𝑘𝑇2

1 − 2𝑘𝑇2𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

∥ 𝐽(𝑔#) − 𝑔# ∥𝐿1 . 
 
According to the Hardy–Rogers fixed-point theorem, making 

𝑎 =
4𝑇2

1 − 2𝑘𝑇2𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

, 𝑏 = 0, 𝑐 = 0, 

 
then 

2𝑎 =
8𝑇2

1 − 2𝑘𝑇2𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

< 1 

 
If  

8𝑇2 < 1 − 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣,
ℝ𝑛
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this is 

8𝑇2 + 2𝑘𝑇2𝑚(Ω)∫ 𝑑𝑣 < 1.
ℝ𝑛

 

 
Then, 

𝑇2 <
1

8 + 2𝑘 𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

, 𝑇 < √
1

8 + 2𝑘 𝑚(Ω) ∫ 𝑑𝑣
ℝ𝑛

. 

 
We have the existence of a single fixed point of , and since it is a fixed point, it is concluded 

that𝐽0 

𝑔#(𝑡, 𝑥, 𝑣) ≡ 0, ∀𝑡 ∈ [0, 𝑇],  𝑥 ∈ Ω,  𝑣 ∈ ℝ𝑛 . 
 
Therefore, 

𝑓1
#(𝑡, 𝑥, 𝑣) = 𝑓2

#(𝑡, 𝑥, 𝑣), 𝑡 ∈ [0, 𝑇],  𝑥 ∈ Ω,  𝑣 ∈ ℝ𝑛 . 
 

CONCLUSIONS 
 
In this work, we established a local uniqueness result for solutions of the Boltzmann equation 
with an external force term. The analysis is based on a fixed point approach of Hardy–Rogers 
type, which allows treating collision operators that are bilinear, symmetric, and non-
continuous. 
The obtained result extends previous uniqueness theorems that rely on continuity assumptions 
for the collision operator. This framework may be useful for further studies on Boltzmann-
type equations with more general force fields or non-standard collision kernels. Future work 
could address global uniqueness or existence results under weaker assumptions. 
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