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Abstract

In this paper we study the local uniqueness of solutions to the Boltzmann equation with an
external force term. Assuming the existence of solutions, we prove a local uniqueness result
by applying a fixed point theorem of Hardy—Rogers. The collision operator is assumed to be
bilinear, symmetric, and non-continuous, which allows extending previous results that require
continuity assumptions. The obtained conditions contribute to the uniqueness theory for
Boltzmann-type equations with force terms.
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1 INTRODUCTION

Consider the following problem: let it be
f:[0,T] x O x R" - R*

that satisfies the equation distributionally:

of \Y F-V oF V,f =
E"‘v' xf+ ’ vf+ta' vf_Q(frf)r (1)
f(0,x,v) = fo(x, v).
Where ;t €10,T]

x = (xq,X9, ..., xp) EQCR"
and .v = (v, Vy, ..., U,) E R"
Here
F:[0,T] X R®" X R" - R"

it is an external vector field that is supposed to be differentiable with respect to time.
Q(f,g)(x,v)is an operator of and we assume that it is bilinear, symmetrical and not
continuous.R™ X R" - R

The operator

1
e, 9)() =§f fl | q, O[f(v)g) + fwHgw') — f(w)gw) — fwg®)] dudw,
—_—

The theory of Boltzmann's equation is a special case of (1), since it is symmetrical, bilinear and
not continuous. In this sense, we will use a more general operator than the one used in
Boltzmann's equation theory.
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Functional space
Consider functional space

{f € L'([0,T] x Q % IR”) f e LY([0,T] x Q X IR") af e LY([0,T] x Q X IR")}
with
Il fllg=Ilf IILl(OT]xQX]Rn)HI of IIL1+II 61]: 1,
and

T
I f I|L1([0,T]><Q><Rn)=f f | f(t,x,v) | dtdxdv.
Rn
0o Ya

We will assume that , andfy(x,v) € Bm(Q) < oo

dv < oo,
]Rn

Particular cases of the differential equation (1)
a) If , then (1) boils down toF = 0

d
a—{ L v-Vf = QU ), F(0,%,v) = fy(x,v),

which is the classic Boltzmann equation.
b) If and is not time-dependent (stationary field), then (1) reduces toF # 0

0
vV +F Vf = QU O.59) = folx,v),

which is the classic differential equation with the term force.
If we assume that solutions exist, we are interested in obtaining local uniqueness from them.

2 State of the art
The purpose of this article is to look for uniqueness conditions for the equation

ou

doF
a—+v V,au+F - Vu+ta -Vou =Q(u,w),

with the initial condition .f (0, x, v) = fy(x, v)

Some studies of this problem with the term are found in [1], where existence and uniqueness
are shown in local conditions. Asano K. (1987) extends the conditions to global
considerations. In [2] Bellomo N. et al. (1989), all have conditions close to equilibrium and
conservative force fields. In [3], Galeano R. (2007) existence and uniqueness theorems were
proved for as a continuous operator. And in [7], Renjun D. et al.F - V,uQ
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Here we will use a fixed-point theorem when the operator is non-continuous of the Hardy—
Rogers type [5], presented in [6] by Pathak H. (2018). We consider the theorem a contribution
to the theory of uniqueness of solutions in differential equations.

Here we prove the following theorem:

Theorem 1
Be
F:R" X R" > R"

differentiable with respect to time, be it

1
0<t< ,
\/8+2km(ﬂ) [ondv

with Jk > 0

dv < oo,m(Q)) < oo,
Rn

and a bilinear, symmetrical, non-continuous operator withQ (+,")
Q € L*(R™ x R™).
Then there is a single local solution to the problem (1).

3 Development
Be
fit, x,v) = f(t,x + vt,v + tF).

From this we have to:

f(t,x,v) = f*(t,x —vt,v — Ft),

of* _of oF _
S =tV VS HE Vo f o Vof = QUL ),
then
af#_
T QU ", M.
Now,

f*0,x,v) = f(0,x,v) = fo(x,v),

forany,.x € Qv € R"
How, thenQ € L'(Q X R™)

e = O + o a0

Let's consider two solutions of the above equation
£ (t, x,v) and definef) (t, x, V)
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g"(t,x,v) = fi'(t,x,v) - 7 (t, x,v).

Then
fi'(t,x,v) = £t x,v) + g*(t, x,v),
and
g#(OJ X, 1.7) = fl#(OJ X, 1.7) - fz#(or X, 17) =0,
I mean

g%(0,x,v) = 0.

Since and are solutions of equation (3), it has to befy" (t, x, V) f5 (¢, x, v)

FH(xv) = F0,xv) + ] Ot fi) dr,

and
t
(b xw) = £0,x,v) + ] QUfE £ d.
0
Then
t t
g*(txv) = j QUff + 9" ff + g") du - j QUfE ) d.
0 0
Let's define the operator inf

LY([0,T] x O x R™)

16" = [ QU+ gt st + g dr- | QU dr
0 0
J:L1([0,T] X Q x R™) — L1([0,T] X Q X R™).

Suppose that ;he is the .J(g") € B € L}([0,T] X @ X R*)0 € B0 € L}([0,T] X & x R™)

0Ois a fixed point of , sincef

J(0) = f QUL £ do - f QCHE £ dr = 0.

Let's verify that zero is the only fixed point of by means of a Hardy—Rogers fixed-point
theorem, concluding that/
git,x,v) =0 and therefore
fi(t,x,v) = f(t,x,v).

Suppose that ,J(g") € B  L}([0,T] X Q X R")

0 € Bisthe.0 € L'([0,T] X Q@ X R™)

Consider ,h*(t,x,v) = g*(¢t,x,v)

h* > g% and evaluate:
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I —J(h*) = ]0 QUFf +g* fF + g% dT— fo Ot ) dr
- f QUFE + R £ + W) dr + j QUfE ) de.
0 0
This is
J@ - I = QU+ g" i+ gy dr— [ QU +RYE R dr
0 0
Developing,
t t t t
I —J(h*) = j QU £ dr + j Ot ") dr + j Q(g* ) dr + j 0(g* g" dr
0 0 0 0
t t t t
—j QU ) dr—j Q(FH ) dr—j Qht £ dr—j Q(h*, 1) dr.
0 0 0 0
So,
I - I =2 f Qs g" dr + f 0(g* " dr
0 0
-2 #,h# dt — h#,h# dr.
fomfz ) dr fOQ( ) de

The above is true since
Q2f,gM = + .9 = (Y. g% + (S, 9" = 20(f, 9.
Then,
t t
J@Y-J0" = [ Q@ t.g"~nydu+ [ aCg® —hhg" 4 n¥yde
0 0
This is
t t
I -1 == [ Q@ ft.g" ~ Wy dr = [ aCg* — hh.g"+ h¥) dr
0 0
Since it is a non-continuous operatot, then there is a such thatQk > 0
Q(h* — g*,p) > k(h* — g"),
forany.p € B

For any one you have top € B
—Q(h* — g%, p) <k(g" —h"),

then
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](g#)—](h#)<kj (g#—h#)dr+kj (g" —h") dr.
0 0

Therefore,
t t t

| J(g") = J(h*) |<kf lg* — h* | dr+kf lg* — h* | dr<2ka | g% — h* | dr.
0 0 0

So,
I 7(g*) —J(h*) Lt (o, rxaxrmy < 2kT?*m(Q) | dv[llh* —J(h*) I +
]RTL
Il J(R®) —J (™) Nl +1 (g% — g% 1]
I mean
17(g*) —J(R*") llr < 2kT?*m(Q) | dv || hR* —J(h*) Il 2
RTL
+2kT?m(Q) | dv Il J(h*) —J(g") la
RTL
+2kT2m(Q)j dv 1 J(g") —g" Iz
RTL
Then,
(1 —=2kT*m(Q) | dv) 1 J(g*) —J(h*) 1< 2kT?*m(Q) | dv(lh* —J(A") lI,2 +
R" RN
I17(g") — g% ).
Therefore,
[ N —J((h") Il,1< 21T | h* — J(h™) I|,1+ 21T
J(g7) =J (W) < 3= 2kT?m(Q) [, dv JCRE) Mt 7 2kT2m(Q) [, dv
17(g*) — g% Il

According to the Hardy—Rogers fixed-point theorem, making
4T?

= ,b = 01 = 01
ST T 2kTm@) [ dv ¢
then
2a = L <1
T 1 rm@) [, dv
If

8T%2 <1-2kT?’m(Q) | dv,
Rn
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this is

8T2 + 2kT?m(Q) | dv < 1.
]RTL

Then,

1 1
T? < T < :
8 + 2k m(Q) [, dv \/8 + 2k m(Q) [pndv

We have the existence of a single fixed point of , and since it is a fixed point, it is concluded
that/0
gt t,x,v) =0,vt € [0,T], x € Q, v € R™.

Therefore,
fft,x,v) = £ (t,x,v),t €[0,T], x € Q, v € R™.

CONCLUSIONS

In this work, we established a local uniqueness result for solutions of the Boltzmann equation
with an external force term. The analysis is based on a fixed point approach of Hardy—Rogers
type, which allows treating collision operators that are bilinear, symmetric, and non-
continuous.

The obtained result extends previous uniqueness theorems that rely on continuity assumptions
for the collision operator. This framework may be useful for further studies on Boltzmann-
type equations with more general force fields or non-standard collision kernels. Future work
could address global uniqueness or existence results under weaker assumptions.
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