

Boltzmann Equation With Force Term

R. Galeano Andrade¹, M. E. Almanza Caro²

¹Institute of Applied Mathematics, Universidad de Cartagena

²Department of Mathematics, universidad de Sucre

Abstract

In this paper we study the local uniqueness of solutions to the Boltzmann equation with an external force term. Assuming the existence of solutions, we prove a local uniqueness result by applying a fixed point theorem of Hardy–Rogers. The collision operator is assumed to be bilinear, symmetric, and non-continuous, which allows extending previous results that require continuity assumptions. The obtained conditions contribute to the uniqueness theory for Boltzmann-type equations with force terms.

Keywords: Boltzmann equation, force term, fixed point, non-continuous operator, Hardy–Rogers theorem.

1 INTRODUCTION

Consider the following problem: let it be

$$f: [0, T] \times \Omega \times \mathbb{R}^n \rightarrow \mathbb{R}^+$$

that satisfies the equation distributionally:

$$\begin{cases} \frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f + t \frac{\partial F}{\partial t} \cdot \nabla_v f = Q(f, f), \\ f(0, x, v) = f_0(x, v). \end{cases} \quad (1)$$

Where

$$, t \in [0, T]$$

$$x = (x_1, x_2, \dots, x_n) \in \Omega \subset \mathbb{R}^n$$

and $v = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$

Here

$$F: [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$$

it is an external vector field that is supposed to be differentiable with respect to time.

$Q(f, g)(x, v)$ is an operator of and we assume that it is bilinear, symmetrical and not continuous. $\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$

The operator

$$Q(f, g)(v) = \frac{1}{2} \int_{\mathbb{R}^n} \int_{|w|=1} q(v, \theta) [f(v')g(u') + f(u')g(v') - f(v)g(u) - f(u)g(v)] du dw,$$

The theory of Boltzmann's equation is a special case of (1), since it is symmetrical, bilinear and not continuous. In this sense, we will use a more general operator than the one used in Boltzmann's equation theory.

Functional space

Consider functional space

$$B = \left\{ f \in L^1([0, T] \times \Omega \times \mathbb{R}^n) : \frac{\partial f}{\partial x_i} \in L^1([0, T] \times \Omega \times \mathbb{R}^n), \frac{\partial f}{\partial v_i} \in L^1([0, T] \times \Omega \times \mathbb{R}^n) \right\}$$

with

$$\|f\|_B = \|f\|_{L^1([0, T] \times \Omega \times \mathbb{R}^n)} + \|\frac{\partial f}{\partial x_i}\|_{L^1} + \|\frac{\partial f}{\partial v_i}\|_{L^1},$$

and

$$\|f\|_{L^1([0, T] \times \Omega \times \mathbb{R}^n)} = \int_0^T \int_{\Omega} \int_{\mathbb{R}^n} |f(t, x, v)| dt dx dv.$$

We will assume that, and $f_0(x, v) \in Bm(\Omega) < \infty$

$$\int_{\mathbb{R}^n} dv < \infty.$$

Particular cases of the differential equation (1)

a) If, then (1) boils down to $F = 0$

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = Q(f, f), f(0, x, v) = f_0(x, v),$$

which is the classic Boltzmann equation.

b) If and is not time-dependent (stationary field), then (1) reduces to $F \neq 0$

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = Q(f, f), f(0, x, v) = f_0(x, v),$$

which is the classic differential equation with the term force.

If we assume that solutions exist, we are interested in obtaining local uniqueness from them.

2 State of the art

The purpose of this article is to look for uniqueness conditions for the equation

$$\frac{\partial u}{\partial t} + v \cdot \nabla_x u + F \cdot \nabla_v u + t \frac{\partial F}{\partial t} \cdot \nabla_v u = Q(u, u),$$

with the initial condition $f(0, x, v) = f_0(x, v)$

Some studies of this problem with the term are found in [1], where existence and uniqueness are shown in local conditions. Asano K. (1987) extends the conditions to global considerations. In [2] Bellomo N. et al. (1989), all have conditions close to equilibrium and conservative force fields. In [3], Galeano R. (2007) existence and uniqueness theorems were proved for as a continuous operator. And in [7], Renjun D. et al. $F \cdot \nabla_v u Q$

Here we will use a fixed-point theorem when the operator is non-continuous of the Hardy–Rogers type [5], presented in [6] by Pathak H. (2018). We consider the theorem a contribution to the theory of uniqueness of solutions in differential equations.

Here we prove the following theorem:

Theorem 1

Be

$$F: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$$

differentiable with respect to time, be it

$$0 < t < \sqrt{\frac{1}{8 + 2k m(\Omega) \int_{\mathbb{R}^n} dv}},$$

with $k > 0$

$$\int_{\mathbb{R}^n} dv < \infty, m(\Omega) < \infty,$$

and a bilinear, symmetrical, non-continuous operator with $Q(\cdot, \cdot)$
 $Q \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$.

Then there is a **single local solution** to the problem (1).

3 Development

Be

$$f^\#(t, x, v) = f(t, x + vt, v + tF).$$

From this we have to:

$$\begin{aligned} f(t, x, v) &= f^\#(t, x - vt, v - Ft), \\ \frac{\partial f^\#}{\partial t} &= \frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f + t \frac{\partial F}{\partial t} \cdot \nabla_v f = Q(f^\#, f^\#), \end{aligned}$$

then

$$\frac{\partial f^\#}{\partial t} = Q(f^\#, f^\#).$$

Now,

$$f^\#(0, x, v) = f(0, x, v) = f_0(x, v),$$

for any $x \in \Omega, v \in \mathbb{R}^n$

How, then $Q \in L^1(\Omega \times \mathbb{R}^n)$

$$f^\#(t, x, v) = f^\#(0, x, v) + \int_0^t Q(f^\#, f^\#) d\tau. \quad (3)$$

Let's consider two solutions of the above equation $f_1^\#(t, x, v)$ and define $f_2^\#(t, x, v)$

$$g^\#(t, x, v) = f_1^\#(t, x, v) - f_2^\#(t, x, v).$$

Then

$$f_1^\#(t, x, v) = f_2^\#(t, x, v) + g^\#(t, x, v),$$

and

$$g^\#(0, x, v) = f_1^\#(0, x, v) - f_2^\#(0, x, v) = 0,$$

I mean

$$g^\#(0, x, v) = 0.$$

Since and are solutions of equation (3), it has to be $f_1^\#(t, x, v) = f_2^\#(t, x, v)$

$$f_1^\#(t, x, v) = f_1^\#(0, x, v) + \int_0^t Q(f_1^\#, f_1^\#) d\tau,$$

and

$$f_2^\#(t, x, v) = f_2^\#(0, x, v) + \int_0^t Q(f_2^\#, f_2^\#) d\tau.$$

Then

$$g^\#(t, x, v) = \int_0^t Q(f_2^\# + g^\#, f_2^\# + g^\#) d\tau - \int_0^t Q(f_2^\#, f_2^\#) d\tau.$$

Let's

define the operator in J

$$L^1([0, T] \times \Omega \times \mathbb{R}^n)$$

$$J(g^\#) = \int_0^t Q(f_2^\# + g^\#, f_2^\# + g^\#) d\tau - \int_0^t Q(f_2^\#, f_2^\#) d\tau.$$

$$J: L^1([0, T] \times \Omega \times \mathbb{R}^n) \rightarrow L^1([0, T] \times \Omega \times \mathbb{R}^n).$$

Suppose that ,he is the $J(g^\#) \in B \subset L^1([0, T] \times \Omega \times \mathbb{R}^n)$ $0 \in B$ $0 \in L^1([0, T] \times \Omega \times \mathbb{R}^n)$
 0 is a fixed point of , since J

$$J(0) = \int_0^t Q(f_2^\#, f_2^\#) d\tau - \int_0^t Q(f_2^\#, f_2^\#) d\tau = 0.$$

Let's verify that zero is the only fixed point of by means of a Hardy–Rogers fixed-point theorem, concluding that J

$g^\#(t, x, v) \equiv 0$ and therefore

$$f_1^\#(t, x, v) = f_2^\#(t, x, v).$$

Suppose that $J(g^\#) \in B \subset L^1([0, T] \times \Omega \times \mathbb{R}^n)$

$0 \in B$ is the $0 \in L^1([0, T] \times \Omega \times \mathbb{R}^n)$

Consider , $h^\#(t, x, v) \geq g^\#(t, x, v)$

$h^\# \geq g^\#$ and evaluate:

$$\begin{aligned} J(g^\#) - J(h^\#) &= \int_0^t Q(f_2^\# + g^\#, f_2^\# + g^\#) d\tau - \int_0^t Q(f_2^\#, f_2^\#) d\tau \\ &\quad - \int_0^t Q(f_2^\# + h^\#, f_2^\# + h^\#) d\tau + \int_0^t Q(f_2^\#, f_2^\#) d\tau. \end{aligned}$$

This is

$$J(g^\#) - J(h^\#) = \int_0^t Q(f_2^\# + g^\#, f_2^\# + g^\#) d\tau - \int_0^t Q(f_2^\# + h^\#, f_2^\# + h^\#) d\tau.$$

Developing,

$$\begin{aligned} J(g^\#) - J(h^\#) &= \int_0^t Q(f_2^\#, f_2^\#) d\tau + \int_0^t Q(f_2^\#, g^\#) d\tau + \int_0^t Q(g^\#, f_2^\#) d\tau + \int_0^t Q(g^\#, g^\#) d\tau \\ &\quad - \int_0^t Q(f_2^\#, f_2^\#) d\tau - \int_0^t Q(f_2^\#, h^\#) d\tau - \int_0^t Q(h^\#, f_2^\#) d\tau - \int_0^t Q(h^\#, h^\#) d\tau. \end{aligned}$$

So,

$$\begin{aligned} J(g^\#) - J(h^\#) &= 2 \int_0^t Q(f_2^\#, g^\#) d\tau + \int_0^t Q(g^\#, g^\#) d\tau \\ &\quad - 2 \int_0^t Q(f_2^\#, h^\#) d\tau - \int_0^t Q(h^\#, h^\#) d\tau. \end{aligned}$$

The above is true since

$$Q(2f_2^\#, g^\#) = Q(f_2^\# + f_2^\#, g^\#) = Q(f_2^\#, g^\#) + Q(f_2^\#, g^\#) = 2Q(f_2^\#, g^\#).$$

Then,

$$J(g^\#) - J(h^\#) = \int_0^t Q(2f_2^\#, g^\# - h^\#) d\tau + \int_0^t Q(g^\# - h^\#, g^\# + h^\#) d\tau.$$

This is

$$J(g^\#) - J(h^\#) = - \int_0^t Q(2f_2^\#, g^\# - h^\#) d\tau - \int_0^t Q(g^\# - h^\#, g^\# + h^\#) d\tau.$$

Since it is a non-continuous operator, then there is a such that $Qk > 0$

$$Q(h^\# - g^\#, p) > k(h^\# - g^\#),$$

for any $p \in B$

For any one you have $top \in B$

$$-Q(h^\# - g^\#, p) < k(g^\# - h^\#),$$

then

$$J(g^\#) - J(h^\#) < k \int_0^t (g^\# - h^\#) d\tau + k \int_0^t (g^\# - h^\#) d\tau.$$

Therefore,

$$|J(g^\#) - J(h^\#)| < k \int_0^t |g^\# - h^\#| d\tau + k \int_0^t |g^\# - h^\#| d\tau < 2Tk \int_0^t |g^\# - h^\#| d\tau.$$

So,

$$\begin{aligned} \|J(g^\#) - J(h^\#)\|_{L^1([0,T] \times \Omega \times \mathbb{R}^n)} &< 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv [\|h^\# - J(h^\#)\|_{L^1} + \\ &\quad \|J(h^\#) - J(g^\#)\|_{L^1} + \|J(g^\#) - g^\#\|_{L^1}]. \end{aligned}$$

I mean

$$\begin{aligned} \|J(g^\#) - J(h^\#)\|_{L^1} &< 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv \|h^\# - J(h^\#)\|_{L^1} \\ &\quad + 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv \|J(h^\#) - J(g^\#)\|_{L^1} \\ &\quad + 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv \|J(g^\#) - g^\#\|_{L^1}. \end{aligned}$$

Then,

$$(1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv) \|J(g^\#) - J(h^\#)\|_{L^1} < 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv (\|h^\# - J(h^\#)\|_{L^1} + \\ \|J(g^\#) - g^\#\|_{L^1}).$$

Therefore,

$$\begin{aligned} \|J(g^\#) - J(h^\#)\|_{L^1} &< \frac{2kT^2}{1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv} \|h^\# - J(h^\#)\|_{L^1} + \frac{2kT^2}{1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv} \\ &\quad \|J(g^\#) - g^\#\|_{L^1}. \end{aligned}$$

According to the Hardy–Rogers fixed-point theorem, making

$$a = \frac{4T^2}{1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv}, b = 0, c = 0,$$

then

$$2a = \frac{8T^2}{1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv} < 1$$

If

$$8T^2 < 1 - 2kT^2 m(\Omega) \int_{\mathbb{R}^n} dv,$$

this is

$$8T^2 + 2kT^2m(\Omega) \int_{\mathbb{R}^n} dv < 1.$$

Then,

$$T^2 < \frac{1}{8 + 2k m(\Omega) \int_{\mathbb{R}^n} dv}, T < \sqrt{\frac{1}{8 + 2k m(\Omega) \int_{\mathbb{R}^n} dv}}.$$

We have the existence of a **single fixed point** of , and since it is a fixed point, it is concluded that $J0$

$$g^\#(t, x, v) \equiv 0, \forall t \in [0, T], x \in \Omega, v \in \mathbb{R}^n.$$

Therefore,

$$f_1^\#(t, x, v) = f_2^\#(t, x, v), t \in [0, T], x \in \Omega, v \in \mathbb{R}^n.$$

CONCLUSIONS

In this work, we established a local uniqueness result for solutions of the Boltzmann equation with an external force term. The analysis is based on a fixed point approach of Hardy–Rogers type, which allows treating collision operators that are bilinear, symmetric, and non-continuous.

The obtained result extends previous uniqueness theorems that rely on continuity assumptions for the collision operator. This framework may be useful for further studies on Boltzmann-type equations with more general force fields or non-standard collision kernels. Future work could address global uniqueness or existence results under weaker assumptions.

References

- [1] Asano, Kiyoshi. *On the Global Solutions of the Initial Boundary Value Problem for the Boltzmann Equation with an External Force*. Transport Theory and Statistical Physics, vol. 16, no. 4, 1987, pp. 735–761.
- [2] Bellomo, N., Lachowicz, M., Palczewski, A., y Toscani, G. *On the initial value problem for the Boltzmann equation with a force term*. Transport Theory and Statistical Physics, vol. 18, 1989, pp. 87–102.
- [3] Galeano, Rafael. *The Boltzmann equation with Force Term near the Vacuum*. Rev. Unión Mat. Argent. [online], 2007, vol. 48, no. 1, pp. 55–63.
- [4] Grünfeld, Cecil Pompiliu. *On the nonlinear Boltzmann equation with force term*. Transport Theory and Statistical Physics, vol. 14, 1985, pp. 291–322.
- [5] Hardy, G. E., y Rogers, T. D. *A Generalization of a Fixed Point Theorem of Reich*. Canadian Mathematical Bulletin, vol. 16, 1973, pp. 201–206.
- [6] Pathak, Hemant. *An Introduction to Nonlinear Analysis and Fixed Point Theory*. Springer Nature Singapore, 2018.
- [7] Renjun Duan, Tong Yang, Changjiang Zhu.

Global existence to Boltzmann equation with external force in infinite vacuum. Journal of Mathematical Physics, vol. 46, no. 5, 2005.

[8] Toscani, G.

On the non-linear Boltzmann equation in unbounded domains. Archive for Rational Mechanics and Analysis, vol. 95, 1986, pp. 37–49.