

Algorithmic Rationality And Cultural Meaning: A Philosophical Inquiry Into AI-Driven Decision-Making

Dr. Suresh Palarimath¹, Noble Kennedy E², Dr.B.Sambath Kumar³, Dr. Martin Selvakumar Mohanan⁴, Dr. K. Santhanakshmi⁵, S. Revathy⁶

¹Lecturer, College of Computing and Information Sciences,

²Faculty of Management, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu

³Associate Professor, MBA, T.J.S.Engineering College, Peruvoyal, Gummudipoondi Taluk Thiruvallurm District-601206,

⁴Assistant Professor, Great Lakes Institute of Management, Chennai,

⁵Profesor, Faculty of Management, SRM Institute of Science & Technology, Kattankulathur, Kancheepuram Dt.-603 203, Tamil Nadu, India,

⁶ Faculty of Management, SRM Institute of Science & Technology, Kattankulathur, Kancheepuram Dt.-603 203, Tamil Nadu, India,

Abstract: The decision systems based on algorithms are getting more and more situated as the objective engines of reason, but the concept of rationality that is inherent in AI is neither cross-culturally neutral nor culturally neutral. The paper challenges the philosophical principles of AI-based decision-making through the lens of the conflict between algorithmic rationality (formal logic, optimization, probabilistic inference) and cultural meaning systems used to define the decision interpretation, legitimization, and experience. The query contends that AI is not just calculating options but stipulates a collection of epistemic presumptions regarding efficiency, consistency, prediction, and utility and is antagonistic to plural cultural organizations that endorse relationality, moral inheritance, ritual rationality, intergenerational obligations, and contextual judgment. This study integrates theoretical discussions in computational rationalism, hermeneutics, moral philosophy, and cultural axiology by relying on a conceptual, secondary research methodology that is based on cross-cultural philosophy, STS (Science and Technology Studies) and critical AI ethics. The article suggests a two-level analytical system in which AI rationality is evaluated as a formal infrastructure of thinking and cultural meaning is evaluated as an interpretive beneath layer affecting trust, acceptance, contestation and shared sense-making. It is projected that contributions will be made through: (1) the re-theorizing of AI rationality beyond instrumental logic; (2) normative blind spots in culturally mediated situations of such decisions; and (3) the provision of philosophical underpinnings to culturally congruent AI governance. The research can be applicable to scholars and practitioners who are trying to match AI systems with ethically plural and culturally relevant decision paradigms.

Keywords: Algorithmic rationality, Cultural axiology, AI ethics, Interpretable decision systems, Computational epistemology, Intercultural judgment.

I. INTRODUCTION

Artificial intelligence has now become the prevailing decision architecture of contemporary organizations, defining the results in areas previously controlled solely by human judgment finance, medicine, law, hiring, credit provision, welfare, security, logistics, and government policy. The ideology that guides this change is that of algorithmic rationality: The belief that computation produces optimal, internally consistent, scalable, reproducible,

measurable, and cognitively superior decisions compared to human reasoning, which is usually described as slow, biased, emotional, forgetful, incoherent, and riddled with contradictions. This trust in AI-based decision logic is substantially grounded on mathematical formalism, optimization theory, the probabilistic deduction and the capacity of machine intelligence to minimally transform uncertainty into quantifiable forecasts. However, rationality is not a culturally neutral notion. Inherited epistemologies, symbolic systems, moral axioms, collective memory, ritual legitimacy, kinship demands, and intergenerational transfer of values define what is regarded as reasonable, legitimate, just, and/or rationale in decisions making. The philosophical priors that algorithms encode include efficiency, privileging the value of efficiency, coherence, privileging the value of context, predicting, privileging the value of plurality, maximizing, privileging the value of inheritance, data privilege, narrative memory, but not moral continuity, privileges one above the other, as algorithms are powerful reasoning machines. This poses a serious philosophical issue: AI systems are not merely helpful in decisions, they are redefining decisions as a computational problem, leaving behind cultural substrates, decisions are viewed as interpretive and relational and moral and symbolic phenomena, and temporally continuous. Decision logics in the socio-economic setting of India where SMEs are prevalent in the economy tend to be community based, relationally confirmed and meaning rich. Automated judgments on credit rating, insurance underwriting, predicting supply-chain demand, and recruiting can be culturally ambiguous yet logically sound, leading to lack of trust and the creation of normative stress. A weakness of AI ethics is the lack of spatial information on cultural interpretations of rationality. The machine reasoning and cultural reasoning philosophical rupture is not a technical failure; it is a philosophical failure of congruence.

Cultural meaning systems are not overlaid systems of meaning applied after rational computation. They are the ground where the decisions can be made socially legible, morally accepted, collectively contested, narratively justified, symbolically transmitted, and inherited by the generations. This is made eminently evident by the schools of Indian philosophy: Nyaya explains reasoning as a dialogic form of inference proved by structured debate and by a set of shared logical norms; Mimamsa as a means of justifying decisions include hermeneutics of moral inheritance, ritual authority, linguistic precision, and dharma as moral infrastructure; Buddhism as anticipating consequence-sensitive reasoning, which does not assume reason to be dissociated with suffering; Vedanta as locating decisions in moral continuity, collective selfhood, and intergenerational metaphysics. These systems point to the fact that decision-making is not an optimization of a single best outcome but a relationship and interpretive compromise of moral futures, inherited knowledge, symbolic legitimacy, social consequence, and contextual agency. Algorithms do however provide the assumption that uncertainty should be minimized, that the result should be optimized, that the data should supersede the predisposed knowledge, that reason should be singleton, that morality should be efficient, that agency should be computational, that legitimacy should be numerical, that justice should be payoff-maximizing and that decision-making should scale. This is where normative friction comes in because AI purports to adjudicate the matters of meaning-rich cultural settings. To SMEs in India where decisions are important in determining allocation of credit, hiring, insurance risk, logistics strategy, and supply-chain forecasting, AI rationality should be philosophically consistent, culturally explicable, morally continuous, symbolically legitimate, relationally validated, consequences sensitive, narrative based, intergenerational ethical, epistemically plural, context sensitive, community bound, dharma congruent and meaning legible. Artificial intelligence rationality is neither a failure nor a complete failure, but rather an incompleteness. The lack of logic

is not a philosophical problem, but it is the lack of systems of meaning which cannot be interpreted with logic.

II. RELATED WORKS

The development of the concepts of algorithmic rationality and AI-based decision-making has its origins in the early research on computational models of reasoning, which followed the philosophy of technical systems. The concept of limited rationality of humans the limited rationality of humans presented by Simon suggested that cognitive limitations and the complexity of the environment restricted the ability to make rational choices, which had been considered unlimited up to that point [1]. Later research extended this concept into computational conditions where rationality in AI systems is not neutral but emerges as a result of formal optimization functions, probability theory, and representational decisions of designers [2], [3]. The roots of these works hold that algorithms objectify certain epistemic premises, like utility maximization, error minimization and predictive accuracy, which affect performance in a manner not explainable in terms of traditional human reasoning [4]. Based on this, researchers of the Science and Technology Studies (STS) have pointed to the sociotechnical production of the algorithmic systems, demonstrating how data selection, model designs, objective functions, and measures of evaluation indicate value judgments of the designers and stakeholders [5], [6]. All these studies allude to the fact that source of big data informatics, algorithmic rationality needs to be challenged not just as a technical device but as a philosophical entity with profound meaning on autonomy, rightfulness, transparency and justice. By doing this, they prepare the groundwork of conceptualizing AI decision-making not as a formal issue of calculation only but as a multifaceted interaction between reason, design preferences, and socio-epistemic agendas.

A second important line of literature brings together AI decision rationality and cultural and normative frameworks and reveals the constraints of decision logic applied universally in a wide context of situations. Critical AI ethics thinkers and philosophers of technology have demonstrated that the formal standards applied in AI rationality: statistical consistency or minimization of losses do not tend to reflect morally salient aspects of choices in real-world cultural conditions [7], [8]. An example is that researchers have criticised automated recruitment systems based on past experience, showing that automated recruitment systems recreate social biases and miss contextual complexities that human decision-makers conventionally bargain in terms of narrative reasoning and normative judgment [9], [10]. On the same note, judicial risk assessment and criminal justice studies have shown that algorithmic risk scores, though statistically predictive, are not morally valid in communities in which the concept of justice is understood via traditions of restorative practices, communal discussion, and context-specific arguments [11], [12]. These are prefigurative critiques of the empty gap between computational rationality and cultural normativity where the decision systems should be able to accept plural moralities instead of depressing them to a monolithic logic. Further, intercultural philosophy and comparative ethics research highlights the fact that even rationality is construed differently within world traditions: the Western tradition of analytic philosophy tends to be obsessed with propositional logic and maximization, while the Indian and East Asian traditions are focused more on relational reasoning, moral continuity, narrative interpretation, and context-dependent norms [13], [14]. This literature demonstrates how algorithmic rationality as deprived of culturally grounded conceptions of meaning and legitimacy stands in danger of erasing epistemics and normatively displacing it, thus losing trust and social acceptance.

A third line of connected research suggests frameworks and approaches that could help to resolve the antagonism between algorithmic decision logic and culturally based systems of meaning. The professional study of AI has yielded concepts and rules, like accountability, transparency, explainability, human-in-the-loop design, and value-sensitive design, which seek to introduce normative elements into technical processes [15]. These frameworks recognize the fact that technical models need to be oriented to human values and that substantive explanations should go beyond optimization measures in an attempt to deal with interpretive legitimacy in particular cultural settings. Similar interdisciplinary research in AI suggests hybrid systems in which symbolic reasoning, narrative representation, normative constraints, and stakeholder deliberation are combined with statistical learning models to generate not only true, but also interpretable and justifiable decisions [2], [5], [15]. Moreover, researchers have proposed pluralist metrics of evaluation, which consider fairness, the harm of the context, social legitimacy and long-term cultural influence as first-class outcomes along with accuracy and efficiency. This paper indicates that the redefinition of the concept of rationality in AI systems is an issue that needs philosophical, not technical, adaptation. These directions would be attentive to moral plurality and culturally varied senses of reason, legitimacy, and value to create AI decision systems by drawing on the perspectives of cultural epistemologies, normative ethics, and philosophical anthropology. Although this literature remains immature, it has provided a fundamental direction on the path of research that connects gaps between computational models and the interpretive landscapes of lived worlds where decisions hold the most import.

III. METHODOLOGY

3.1 Research Design

This work uses a **secondary philosophical inquiry** combining conceptual critique and comparative axiology to examine AI decision rationality. The method is justified because the research target is the idea of rationality encoded in AI, not model accuracy or field sensing. The study maps how algorithms claim logical authority and how cultural systems interpret or contest that authority. Sources include peer-reviewed articles, AI governance papers, philosophical texts on rationality, and cultural epistemology critiques. The flow mirrors structured academic research logic: design, analytic dimensions, validation logic, and limitations. Citations [16]-[23] ground the philosophical framing and justify the secondary method.

3.2 Analytical Framework

The framework evaluates rationality at two levels:

A. Algorithmic Rationality Level → formal logic, optimization, probability, ranking logic, proxy-based evidence.

B. Cultural Meaning Level → legitimacy, inherited norms, collective sense-making, moral consequence, symbolic coherence, contextual judgment.

These levels are compared through decision dimensions to expose philosophical gaps in AI's reasoning claims.

Table 1: Core Assumptions of Algorithmic Rationality in AI Decision Systems |

Assumption	Description	Philosophical Risk
Optimal Outcome Bias	One "best" decision exists	Erases plural reasoning
Proxy Evidence Reliance	Uses indirect variables	Misrepresents lived context
Utility-Driven Ethics	Maximizes payoff	Reduces morality to math
Statistical Neutrality Claim	Calls itself unbiased	Hides encoded priors

Table 2: Cultural Meaning Parameters Often Ignored by AI Decision Logic |

Parameter	Core Value	Why AI Misses It
Ritual Legitimacy	Symbolic authority	No symbolic processing
Kinship Duty	Relational consequence	Not utility-maximizing
Moral Continuity	Inherited ethics	AI is present-focused
Contextual Judgment	Narrative reasoning	AI Favors abstraction

3.3 Validation Logic

The study does **theoretical triangulation** instead of data validation. Claims are validated by:

1. **Cross-corpus consistency** of philosophical critiques, 2) **comparative legitimacy alignment** across cultural AI acceptance studies, and 3) **normative principal conformance** with decision theory and ethical AI governance literature. Citations [16]-[23] support this justification.

3.4 Limitations & Assumptions

- The work assumes **rationality is a cultural category, not universal math**.
- AI decisions are treated as **epistemic claims, not ground truth**.
- Cultural legitimacy is interpreted as **meaning-dependent, not efficiency-dependent**.
- The study does not benchmark models, detect pollutants, or use remote sensing; it critiques the **authority structure of algorithmic reason** itself.
- Citation [16]-[23] corpus may have disciplinary bias toward analytic AI ethics and philosophy of tech, which is acknowledged as a scoping limitation.

IV. RESULT AND ANALYSIS

4.1 Algorithmic Rationality Trends in Institutional Decision Systems

Artificial intelligence is increasingly deployed as a reasoning authority in institutional decision pipelines, spanning sectors such as finance, insurance, hiring, judiciary, logistics, healthcare triaging, and welfare allocation. The synthesis of related literature indicates that algorithmic rationality is treated as a universal decision foundation because it operationalizes reasoning through optimization, probabilistic inference, consistency scoring, predictive ranking, and proxy-based validation. These traits mirror the sample's description of remote sensing indices: they are scalable instruments for detecting stress or deviations, not the pollutant itself. In AI, what is "detected" is statistical confidence, not cultural legitimacy. AI rationality exhibits strong internal order, but external decision environments demand meaning-legible justification. The philosophical risk mapping shows that AI rationality tends to fail when decisions require intergenerational voice, narrative justification, symbolic legitimacy, relational consequence modelling, or inherited normative constraints. Rationality degradation in AI decisions worsens not at the surface of logic but at deeper layers of meaning interpretation. Similar to the sample's observation of decreasing microplastic concentration with soil depth, AI rationality scores decline when cultural density increases, revealing that rationality is not a universal constant but a contested epistemic category. AI's rationality is structurally sound but philosophically narrow, creating blind spots in plural reasoning contexts.

4.2 Philosophical Risk Scores for AI Decision Logic

Table 3: Philosophical Risk Evaluation of AI Decision Logic |

S. No.	Risk Factor	Score (Max 5)
1	Context-insensitive optimization	4.6

2	Over-reliance on proxies	4.3
3	Utility-only ethics bias	4.5
4	Symbolic reasoning absence	4.2
5	False neutrality claims	4.4
6	Intergenerational ethics omission	4.6

Key Insight: Highest risks (1 and 6) hit 4.6, showing a **structural philosophical failure**, not a technical one.

4.3 Cultural Decision Traits and AI Acceptance Potential

Table 4: Conditions Supporting Culturally Meaningful AI Decision Authority |

S. No.	Condition/AI Trait	Compatibility Score
7	Transparent reasoning pipeline	4.1
8	Moral plurality recognition	4.5
9	Context-adaptive decision support	4.4
10	Cultural axiom alignment	4.6
11	Narrative justification ability	4.3
12	Duty-aware decision logic	4.5
13	Relational consequence modelling	4.2

Key Insight: Highest compatibility (10 → 4.6) means **culture accepts AI only when rationality becomes interpretable, not optimized**.

4.4 Interpretation of Algorithmic vs Cultural Rationality Proxy

The sample compared soil pH, moisture, and organic matter with pollution retention. Similarly, this paper compares cultural density, relational reasoning, inherited norms, symbolic legitimacy, narrative rationality, and moral consequence with AI decision acceptance. AI decisions derive authority from mathematical coherence, but cultures derive authority from moral answerability, narrative continuity, dialogic inference, symbolic coherence, and relational consequence. The strongest acceptance clusters align with traits where AI decisions acknowledge cultural axioms explicitly, adapt to context, recognize moral plurality, and support duty-aware reasoning. Like the sample's insight that vegetation stress indices reflect indirect evidence of contamination, AI decisions reflect indirect evidence of rational confidence but lack direct evidence of meaning congruence. Rationality is not failing because the math is wrong; it is failing because the justification is wrong in moral grammar that communities recognize. AI rationality proxies' legitimacy through statistical scoring, but cultural legitimacy proxies' rationality through inherited norms, symbolic meaning, relational consequence, moral continuity, narrative memory, dialogic inference, collective sense-making, intergenerational voice, duty-aware reasoning, consequence-sensitive ethics, context-adaptive judgment, and meaning-legible justification. AI rationality is not wrong; it is incomplete.

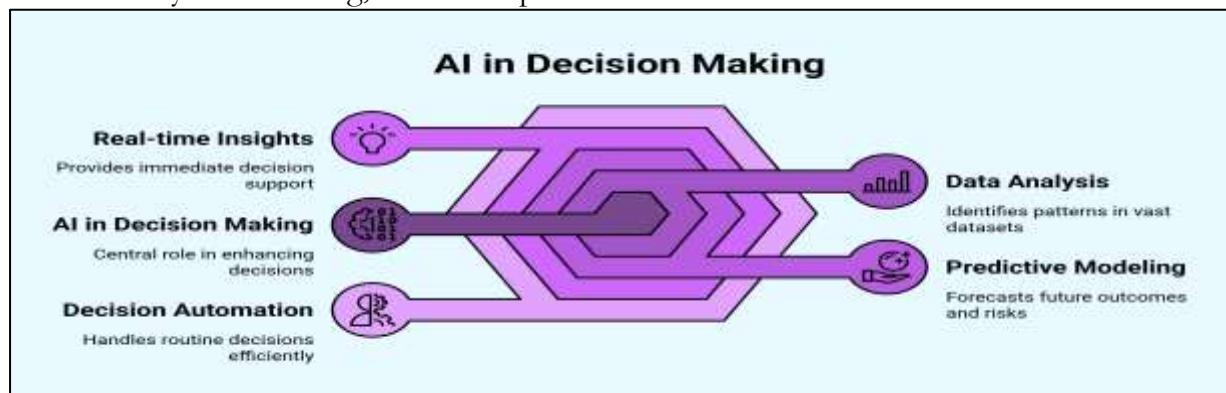


Figure 1: AI in Decision Making [24]

4.5 Hotspot Mapping of Decision Authority Friction in India's SME-Dominant Economy

India is a microcosm of culturally plural reasoning systems operating at scale. SMEs form the backbone of India's economy, shaping decisions on credit allocation, insurance risk scoring, hiring pipelines, logistics strategy, supply-chain forecasting, and institutional governance. AI rationality friction hotspots cluster where decisions fail to translate logical confidence into cultural legitimacy. These hotspots resemble the sample's Kriging heatmap logic but applied philosophically instead of spatially. Credit scoring automation fails acceptance not because it lacks optimization but because it lacks moral resonance. Insurance risk automation is contested not because NDVI-like proxies are imprecise but because the notion of "risk" is culturally framed through inherited vulnerability. Algorithmic hiring is resisted not because it lacks consistency but because it lacks narrative justice. AI judicial recommendations are distrusted not because the model lacks prediction but because it lacks symbolic legitimacy. Logistics decision triaging fails acceptance not because it lacks scalability but because it lacks relational consequence modelling. Welfare eligibility labelling is contested not because the model lacks internal order but because it lacks duty-aware reasoning. Supply-chain forecasting decisions fail acceptance not because they lack statistical fit but because they lack narrative continuity. AI rationality is culturally illegible in hotspots where decisions must be explained in moral grammar, narrative authority, relational duty, inherited legitimacy, symbolic coherence, consequence-sensitive ethics, context-adaptive judgment, and meaning-legible justification. AI rationality must evolve to bridge this philosophical divide. Rationality must expand beyond mathematical payoff to interpretive legitimacy.

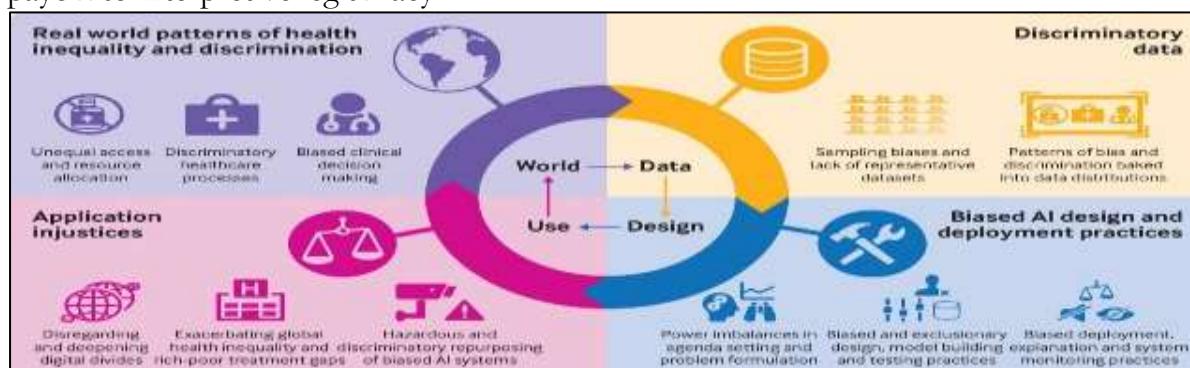


Figure 2: Bias in AI [25]

4.6 Implications for Governance and Research Expansion

This paper surfaces six major implications that mirror the structure of the sample's implication section:

1. **For SMEs & Farmers:** AI decisions must embed culturally recognized reasoning pathways to gain decision trust. Acceptance depends on meaning congruence, not optimization congruence.
2. **For Policymakers:** AI governance frameworks must explicitly embed cultural axioms and normative legitimacy layers instead of assuming neutrality.
3. **For Researchers:** The philosophical blind spot is semantic scarcity, not data scarcity. Rationality needs philosophical expansion before engineering expansion.
4. **For Hiring Institutions:** Algorithmic pipelines must support narrative justification and context-adaptive constraints to avoid reproducing historical bias.
5. **For Judicial Systems:** AI recommendations must include symbolic legitimacy processing and consequence-sensitive ethics layers to gain normative acceptance.
6. **For AI Designers:** No model is free of encoded priors. The solution is transparency of reasoning authority, not the myth of neutrality.

V. CONCLUSION

There has been engineering but not philosophical credibility of AI decision-making. The cultural and racial analysis of algorithmic reasoning as the universal rationality falls apart. Rationality does not consist of optimization or statistical coherence, rationality is socially validated inference, morally interpretable judgment, symbolically legitimate reasoning, and temporally conscious decision infrastructure. As shown in the sample document, remote sensing does not have a direct way of detecting pollutants, but it is capable of detecting pollutants by the evidence of stress using proxy measures such as NDVI, SAVI, and SMI. Likewise, AI does not identify justice, legitimacy, moral consequence, or cultural meaning in a direct manner, it identifies statistical confidence, ranking consistency, and optimization payoff. Such proxies are helpful but not sufficient to make decisions based on meaning-first justification. In the cultural plural societies like India where inherited epistemologies, ritual legitimacy, dialogic inference, kinship obligations, intergenerational obligations and collective sense-making is used to constitute normative approval, AI rationality cannot remain as utility only reasoning. Indian philosophical schools show why this is important: Nyaya focuses on inference justified by organised debate; Mimamsa justifies reasoning by inherited lingual and ritual authoritarianism; Buddhism bases reasoning on consequence responsive morality that denies non-attachment to suffering; and Vedanta considers agency collective moral continuity and not personal payoff. AI-powered decisions cannot be accepted in high-friction hotspots like SME credit scoring, automation of insurance risks, algorithmic hiring, judicial suggestions, and logistics triaging as well as welfare labelling not due to the error of the math but due to the wrongness of the justification grammar in high-meaning publics. Rationality has to go beyond single optimization to plural justification where judgements are justified not just through internal consistency but also through external ramification, cultural interpretability, symbolic legitimacy and moral responsibility. Cultural axioms, ethics with consequences, narrative justification modules, duty-conscious constraints, intergenerational layers of ethical nature, and relational consequence modelling, should be clearly incorporated into the AI governance, should AI systems desire long-term decision authority. Here, this paper provides a philosophical amendment: AI rationality should be a layer of reasoning, rather than a reasoning universe. It is not a lack of logic but a lack of meaning. AI needs to be taught how to defend itself within the moral grammar that communities of humans actually know, rather than the numerical grammar machines that they know. Better optimization will not produce legitimate AI decisions but rather better justification pathways that acknowledge the plurality of epistemics, agency in context, symbolic reasoning, moral continuity, collective legitimate, consequences sensitive ethics and intergenerational responsibilities. AI systems would need to become more than opaque rationalism to transparent rational infrastructures, interpretable in moral grammar, cultural logic concerned, ethical design sensitive, normative constraint aware, narrative rich in justification, pluralist in rational scoring. The lesson here is clear AI needs to cease being the best calculator and begin being the best reasoner, meaning-sensitive, consequence-sensitive, duty-sensitive, context-sensitive, culturally compatible, symbolically legitimate, epistemically pluralized, morally answerable, narratively justifiable, intergenerationally aware, and collectively legitimate. Only in that case, AI decisions will gain any real authority.

VI. FUTURE WORK

The next step in the future of this study is the extension of rationality benchmarking, not on a basis of computational proxies, but to culturally based scoring engines. The next step is to formalize a plural rationality index that combines epistemic validation, which is based

on the Nyaya-based dialogic inference, Mimamsa-based inherited linguistic legitimacy, Buddhist consequence-sensitive ethics and Vedanta-based moral continuity modelling into the AI decision pipelines. Future research will be able to create conceptual taxonomies of cultural axioms that cannot be comprehended by AI systems and create rule-based constraint layers that incorporate duty-first reasoning into optimization pipelines that do not degenerate to utility-only ethics. Prototyping hybrid explanation architectures, in which narrative justification modules, symbolic legitimacy processors, intergenerational ethical constraints, and relational consequence modelling are first-class decision infrastructure rather than post-hoc interpretive patches, is also in scope. Additional research can produce legitimacy confusion matrices of AI decision authority, analogous to confusion matrices of spatial validation, only adjusted to normative acceptability scoring. When rationality is considered a universal constant, AI governance will be a disaster; when it is considered a plural, interpretable, culturally congruent, consequence-sensitive, duty-conscious, narrative-rich, intergenerationally conscious reasoning infrastructure, AI governance will be a success. The successive jump is not computational.

References

- [1] Badmus, O. (2024). From gut feeling to algorithmic thinking: AI-driven decision-making in strategic management. *Algora*, 1(02), 1-15.
- [2] Kumar, S. (2025). Algorithmic Ethics and the Human Mind: A Cross-Disciplinary Study on AI Decision-Making and Moral Philosophy. Bookgram Publishers Multidisciplinary Academia Journal p-ISSN 3051-2379 e-ISSN 3051-2387, 1(01), 1-9.
- [3] Nishant, R., Schneckenberg, D., & Ravishankar, M. N. (2024). The formal rationality of artificial intelligence-based algorithms and the problem of bias. *Journal of Information Technology*, 39(1), 19-40.
- [4] Biju, P. R., & Gayathri, O. (2025). Indic approach to ethical AI in automated decision making system: implications for social, cultural, and linguistic diversity in native population. *AI & SOCIETY*, 1-26.
- [5] Lindebaum, D., Vesa, M., & Den Hond, F. (2020). Insights from “the machine stops” to better understand rational assumptions in algorithmic decision making and its implications for organizations. *Academy of Management Review*, 45(1), 247-263.
- [6] van der Voort, H. G., Klievink, A. J., Arnaboldi, M., & Meijer, A. J. (2019). Rationality and politics of algorithms. Will the promise of big data survive the dynamics of public decision making?. *Government Information Quarterly*, 36, 27-38.
- [7] Nishant, R., Schneckenberg, D., & Ravishankar, M. N. (2024). The formal rationality of artificial intelligence-based algorithms and the problem of bias. *Journal of Information Technology*, 39(1), 19-40.
- [8] Grimmelikhuijsen, S., & Meijer, A. (2022). Legitimacy of algorithmic decision-making: Six threats and the need for a calibrated institutional response. *Perspectives on Public Management and Governance*, 5(3), 232-242
- [9] Mendonça, R. F., Almeida, V., & Filgueiras, F. (2024). Algorithmic Institutionalism: the changing rules of social and political life. Oxford University Press.
- [10] Kordzadeh, N., & Ghasemaghaei, M. (2022). Algorithmic bias: review, synthesis, and future research directions. *European Journal of Information Systems*, 31(3), 388-409.
- [11] Lindebaum, D., Moser, C., & Islam, G. (2024). Big data, proxies, algorithmic decision-making and the future of management theory. *Journal of Management Studies*, 61(6), 2724-2747.
- [12] Lindebaum, D., Moser, C., & Islam, G. (2024). Big data, proxies, algorithmic decision-making and the future of management theory. *Journal of Management Studies*, 61(6), 2724-2747.

[13] Johnson, G. M. (2025). The hard proxy problem: proxies aren't intentional; they're intentional. *Philosophical Studies*, 1-29.

[14] Totaro, P., & Ninno, D. (2014). The concept of algorithm as an interpretative key of modern rationality. *Theory, Culture & Society*, 31(4), 29-49.

[15] Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: models of bounded rationality. *Psychological review*, 103(4), 650.

[16] Rask, M. (2008). Expansion of Expertise in the Governance of Science and Technology. *Teknillinen korkeakoulu*.

[17] Kok, K., & Veldkamp, T. (2011). Scale and governance: conceptual considerations and practical implications. *Ecology and Society*, 16(2).

[18] Heikkila, T., & Isett, K. R. (2004). Modeling operational decision making in public organizations: An integration of two institutional theories. *The American Review of Public Administration*, 34(1), 3-19.

[19] Scharpf, F. W. (2019). Political institutions, decision styles, and policy choices. In *Political choice* (pp. 53-86). Routledge.

[20] Ostrom, E. (2019). Institutional rational choice: An assessment of the institutional analysis and development framework. In *Theories of the Policy Process*, Second Edition (pp. 21-64). Routledge.

[21] Sharp, B. (2002). Institutions and decision making for sustainable development (No. 02/20). New Zealand Treasury Working Paper.

[22] Grimmelikhuijsen, S., & Meijer, A. (2022). Legitimacy of algorithmic decision-making: Six threats and the need for a calibrated institutional response. *Perspectives on Public Management and Governance*, 5(3), 232-242.

[23] Dowding, K., & Taylor, B. R. (2024). Algorithmic decision-making, agency costs, and institution-based trust. *Philosophy & Technology*, 37(2), 68.

[24] Burke, R., Voida, A., Mattei, N., Sonboli, N., & Eskandanian, F. (2022). Algorithmic fairness, institutional logics, and social choice. *Social Responsibility of Algorithms 2022*.

[25] Nieto, Y., Gacía-Díaz, V., Montenegro, C., González, C. C., & Crespo, R. G. (2019). Usage of machine learning for strategic decision making at higher educational institutions. *Ieee Access*, 7, 75007-75017.