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This study proposes an ensemble-based approach for predicting university student
performance and recommending optimal course combinations. The approach
integrates Random Forest (RF), Long Short-Term Memory networks (LSTM) with
Attention mechanisms, and Association Rule Mining (ARM) to address both individual
academic forecasting and institutional course planning. RF is employed for effective
feature selection and classification, while LSTM-A captures temporal patterns in
students' academic trajectories. ARM is used to extract interpretable associations
between course groupings and performance trends. The dataset contains detailed
transcript and study plan records from 107 undergraduate students across 17 semesters.
The experimental evaluation shows that the ensemble model achieves an accuracy of
82% and a macro-F1 score of 80%, outperforming traditional machine learning
techniques. Additionally, the framework successfully identifies at-risk students with
85% accuracy in early semesters, supporting its potential use for academic advising and
early intervention strategies.
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1 INTRODUCTION

The rapid digitization of educational systems has led to an explosion of student
academic data, offering unprecedented opportunities for data-driven decision-making
in higher education. Educational Data Mining (EDM) has emerged as a pivotal field,
focusing on extracting actionable insights from educational data to predict student
performance, identify at-risk individuals, and optimize learning pathways. Student
performance prediction enables early intervention strategies, such as personalized
tutoring, course adjustments, or additional support resources, which can significantly
reduce dropout rates, improve retention, and enhance overall academic outcomes. For
instance, early identification of struggling students can allow advisors to intervene
before failures occur [1, 2], potentially saving educational resources and improving
student satisfaction. In most higher education programs, where cumulative knowledge
builds across semesters, such predictions are particularly valuable, as failure in
foundational courses can cascade into broader academic difficulties |3, 4].

However, traditional academic counseling methods often rely on subjective
assessments by advisors or limited historical context, such as overall GPA, which may
skip complex patterns like temporal grade trends over semesters or dependencies
between course combinations. These oversights can lead to undesirable decisions, such
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as recommending course pairs that may lead to poor performance [5, 6]. Recent studies
(2, 5, 6, 7, 8] have shown that multi-dimensional factors, including workload, course
type, and sequential performance, play a crucial role in student success, indicating the
need for more advanced analytical methods that involve a mixture of machine learning
approaches. The students’ academic history such as the previous grades and cumulative
GPA is one of the most important factors that influences the students’ performance
[5, 7, 10]. Furthermore, demographic factors including socio-economic background
and parental education level have shown notable correlations with results [5, 8]. In
addition to course-specific attributes such as difficulty level, credit load, and
prerequisite dependencies [6, 11], and temporal patterns, including grade progress
across semesters and course sequencing effects, which contribute to the early discovery
of students at academic risk [7, §].

Machine learning approaches have shown considerable effectiveness in student
performance prediction, with varying accuracy rates across different methodologies.
For example, the study in [12] achieved a high accuracy (96%) employing Support
Vector Machines (SVM), outperforming Decision Trees (DT), Naive Bayes (NB), and
K-Nearest Neighbors (KNNN)classifiers. A systematic review was conducted in [13] of
39 studies published between 2015-2021, identifying DTS, Artificial Neural Networks
(ANN), SVM, KNN, Linear Regression (LR), and NB as the six most commonly
employed models. While the work in [14] achieved 70-75% classification accuracy using
six machine learning algorithms to predict final exam grades from midterm
performance, highlighting the importance of early prediction approaches.

More recently, ensemble learning approaches have consistently demonstrated superior
performance by combining multiple models. Several studies [1, 6, 15, 16, 17, 18] have
demonstrated that ensemble methods combining diverse algorithms such as Naive
Bayes (NB), SVM, MLP, and Logistic Regression (LR) significantly outperform
individual classifiers. Malik et al. [6] introduced dynamic feature ensemble evolution
for enhanced feature selection in student performance prediction, achieving improved
accuracy through optimized feature selection combined with ensemble classifiers. In
[19] the authors achieved classification accuracy of 84%-93% in predicting at-risk
students from the Open University Learning Analytics dataset by deploying a deep
artificial neural network on handcrafted features outperforming baseline LR and SVM
models. The study in [20] proposed a deep ensemble learning method combining
multiple Deep Belief Networks optimized by particle swarm optimization with
reinforcement learning-based weighting, achieving an RMSE of 1.66, MAPE of 9.75%,
and R? of 0.7430, significantly outperforming conventional ensemble approaches.
Despite these advances, research gaps persist in the integration of predictive modeling
with course recommendation systems. While recommendation system techniques have
been extensively applied to discover course relationships and generate actionable
scheduling recommendations, most existing approaches focus either on performance
prediction or course recommendation separately, without exploring the benefits of
combining both techniques.

This study addresses these gaps by proposing ensemble-based approach that integrates
Random Forest (RF), Long Short-Term Memory networks with attention mechanisms
(LSTM-A), and Association Rule Mining (ARM) [21] for student performance
prediction and course combination recommendation. This approach leverages the
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complementary strengths of three techniques, RF for feature selection and
classification, LSTM-A for capturing temporal patterns in academic data across
multiple semesters, and ARM for extracting course associations. The work is evaluated
using a real-world dataset containing detailed transcript and study plan records from
107 undergraduate students across 17 semesters. The proposed ensemble model
achieves 82% accuracy and 80% macro-F1 score, outperforming traditional
approaches. Furthermore, the approach identifies at-risk students with 85% accuracy
in eatly semesters, demonstrating practical utility for academic advising and early
intervention strategies. In addition to predicting student outcomes, integration of ARM
enables the system to recommend optimal course combinations.

The remainder of this paper is organized as follows: Section 2 reviews related work in
machine learning approaches, ensemble learning methods, and association rule mining,.
Section 3 describes the proposed ensemble framework architecture and methodology.
Section 4 presents experimental setup, dataset characteristics, evaluation metrics, and
results analysis. Finally, Section 5 concludes the paper and provides the future work.

2 RELATED WORK

The following review examines existing work in three primary domains: machine
learning approaches for student performance prediction, ensemble learning methods,
and association rule mining for course recommendation systems.

A. Machine Learning Approaches

Multiple studies have demonstrated the effectiveness of traditional machine learning
algorithms with varying accuracy rates. Waheed et al. [19] proposed a deep artificial
neural network on handcrafted features extracted from Virtual Learning Environment
clickstream data, achieving classification accuracy of 84%-93% in predicting at-risk
students from the Open University Learning Analytics dataset outperforming baseline
LR and SVM models. Ahmed [12] examined SVM, Decision Tree (DT), Naive Bayes
(NB), and KNN classifiers, finding that SVM achieved optimal performance with 96%
accuracy after parameter tuning, followed by DT with 93.4% accuracy. However, the
high accuracy was achieved on a specific dataset with tuned parameters. Alsariera et al.
[13] conducted a systematic review of 39 studies published between 2015-2021,
identifying DTs, ANNs, SVMs, KNN, LR, and NB as the six most commonly
employed models, with academic, demographic, internal assessment, and family-
personal attributes as the most predominant predictive features. Yagel [14] achieved
70-75% classification accuracy using six algorithms (RF, NN, SVM, LR, NB, and
KNN) to predict final exam grades from midterm performance with 1854 students,
emphasizing the importance the importance of midterm scores as predictors. Recent
studies [9, 22] have explored online learning behavior during COVID-19, achieving
high prediction accuracy using Learning Management System data and behavioral
features. A machine learning approach to online learning performance prediction [10]
demonstrated the effectiveness of combining multiple data sources including
clickstream data, assessment scores, and engagement metrics. Badal et al. [23]
conducted predictive modeling and analytics of students' grades, while Abuzinadah et
al. [24] demonstrated the role of convolutional features combined with machine
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learning for predicting student performance from MOODLE data, achieving
significant improvements over traditional methods.

B. Ensemble Learning Approaches

Ensemble learning approaches have consistently demonstrated superior performance
by combining multiple models' complementary strengths. Malik et al. [6] introduced
dynamic feature ensemble approach for enhanced feature selection in student
performance prediction, achieving improved accuracy through optimized feature
selection combined with ensemble classifiers. Saidani et al. [15] developed an ensemble
learning approach for multimedia-supported virtual learning systems, eliminating the
need for manual feature extraction by utilizing CNN-derived features combined with
machine learning models. Tang et al. [20] proposed a deep ensemble learning method
combining multiple Deep Belief Networks (DBNs) optimized by particle swarm
optimization with a feature-ranking mechanism using Relief and MRMR methods, and
employed learning automata to determine optimal weight values for each DBN model
through reinforcement learning. The ensemble model achieved an RMSE of 1.66,
MAPE of 9.75%, and R? of 0.7430 on a dataset of 628 Chinese university students with
30 features including demographic, academic, and socio-economic factors, significantly
outperforming baseline methods including conventional ensemble (RMSE=4.05,
MAPE=24.89%) and other machine learning approaches. Yan and Li [16] explored
predicting student performance using deep ensemble learning, finding that MLP 12-
Neuron models performed best in terms of RMSE. Several studies [17, 18, 19, 16, 1]
have demonstrated that ensemble methods combining diverse algorithms such as NB,
SVM, MLP, and LR significantly outperform individual classifiers. Abdasalam et al. [3]
introduced an optimized ensemble deep neural network for grade prediction,
addressing the challenges of complex student performance data. Tong and Li [2]
developed an ensemble learning framework with result explanation capabilities,
utilizing six distinct base learners with logistic regression as the meta-learner. Yilmaz
and Sekeroglu [4] focused on predicting students at risk during the pandemic using
ensemble models that incorporated both synchronous and asynchronous learning
activities, demonstrating the practical value of ensemble approaches in distance
learning contexts. Singh et al. [25] conducted a rapid review of 27 studies examining
the application of machine learning in predicting student performance in university
engineering programs, identifying reinforcement learning, deep CNNs, and optimized
SVMs as the most effective approaches, though highlighting limitations in single-
institution samples and external validation.

C. Association Rule Mining in Course Recommendation

Association rule mining has been extensively applied to discover course relationships
and generate actionable scheduling recommendations. The Apriori algorithm, first
introduced by Agrawal et al. [21], remains the most widely adopted approach for
identifying frequently co-occurring course combinations. Abha et al. [26] developed an
ensemble model for assessing features influencing students' employability in higher
educational institutes, demonstrating the value of integrated approaches. Hussain and
Khan [11] developed Student-Performulator for predicting academic performance at
secondary and intermediate levels, incorporating course selection patterns and
achieving significant prediction accuracy. Peng et al. [7] explored online learning
behavior analysis with explainable machine learning, providing interpretable insights
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into factors affecting student achievement. Musso et al. [8] demonstrated that machine
learning approaches can successfully predict key educational outcomes across academic
trajectories by analyzing learning strategies, motivation, and socio-demographic factors.
However, notable research gaps persist regarding integration of association rules with
ensemble prediction systems, handling high-dimensional course catalogs, and
addressing data sparsity in institutions where students sample from diverse curricular
pathways.

3 Data and Methodology

The proposed methodology combines Random Forest (RF), Bidirectional LSTM
neural networks, and Association Rule Mining (ARM) to accurately predict grades and
generate interpretable course recommendations. The methodology starts with merging
grade and study plan records, followed by extracting the cumulative GPA, grade trend,
semester load, course type. The grades are then categorized into Low, Medium, and
High, and sequences of three consecutive semesters for temporal modeling are created.
A chronological train-test split is applied at the 70th percentile of semester_id, and
SMOTE oversampling balances classes in the training set. RF is then trained on
features for non-linear patterns, while the Bidirectional LSTM with attention handles
sequences to capture temporal trajectories. Subsequently, the predictions from both
models are combined using weighted ensemble voting where RF weighted at 0.65 and
LSTM at 0.35. Next, ARM is applied using extracted rules to detect high-risk
predictions. Figure 1 illustrates the main phases of the proposed ensemble model.

Grades  Study Plan

Final Predictions &
___] =1 Course Recommendations
. RF Training —» Ensemble Integration
Data Preprocessing Weighted Voting: ARM
& RF. Lsm —> Rules
- " : o Extraction
eature Engineering LSTM Training —»> | 0.65 0.35

Figure 1: Flowchart of the Ensemble Model

3.1 Data Preprocessing

The process begins with loading and merging the historical grade data containing
(semester_id, student_id, course_code, course_title, grade_letter, grade_score) with the
study plan data containing (course_code, course_type). semester_id is converted to
numeric for temporal ordering, and the data is sorted by student_id and semester_id
to maintain chronological order within each student’s record. Table 1 shows the
predictors derived from the features, and Table 2 presents the grades categorization
into three classes.

Table 1: Derived Predictors
Derived Description
Predictor
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gpa_cumu Cumulative GPA is calculated as the expanding mean of
grade_score per student to explore the change in academic
performance.

grade_trend The percentage change in grade_score per student, filled with 0
for the first entry to measure change in performance.

sem_load The count of courses taken per student per semester to identify
workload effects where high semester loads may affect
performance.

course_type core=1, elective=0

Table 2: Grade Category Distribution

Grade Category | Letter Grade Count Percentage
Low (0) D+,D, F 949 18.6%
Medium (1) C,C+,B 1835 36.0%
High (2) B+, A, A+ 2317 45.4%
Total 5101 100%

The grouping of grades in Table 2 reduces the classes from 9 to 3, improving balance
where the students’ distribution on grades. Furthermore, it serves the main goal of the
study which is detecting at-risk students. Sequences of length 3 are created for the NN,
aggregating features into sliding windows per student to enable temporal modeling.
The dataset is split into 70%-30% for train and test sets, respectively. Synthetic
Minority Over-sampling Technique (SMOTE) is applied to oversample the minority
classes (Low, Medium) to match the majority class (High) which leads to a balanced
train set of 4,633 samples.

3.2 Random Forest (RF)

RF is applied for classification on the balanced feature set. The algorithm builds
multiple DT, each trained on bootstrapped samples and random feature subsets, and
aggregates predictions via majority voting.

The algorithm starts by taking the balanced features (gpa_cummu, grade_trend, sem_load,
course_type) and labels as an input. Then it trains with 100 estimators, max_depth=10
and balanced class weights. Algorithm-1 shows the steps of RF.

The choice of RF comes from its robustness to non-linear data, resistance to overfitting
through bagging, and ability to provide feature importance, which helps to understand
predictors like cumulative GPA for student performance.

Algorithm- 1: Random Forest Classification

‘ Algorithm-1: Random Forest Classification
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Input: Balanced feature set F, labels L
Output: Predictions P, feature importance [
: Initialize forest as empty

: for 7 = 1 to num_estimators do

: Bootstrap sample § from (F, L)

: Train decision tree T on § with max_depth
: Add T to forest

: for each test sample x do

: P/x] = majority vote from all T'in forest

: I = average feature importance across all T’
: Return P, |

O 00 1 O\ Ut AW

3.3  Long Short-Term Memory Neural Network (LSTM)

The neural network uses a Bidirectional Long Short-Term Memory (LSTM) attention
mechanism to model temporal dependencies in student performance trajectories.

The input data consist of sequences of length 3, representing 3 consecutive semesters
per student, with 4 features per time step: cumulative GPA (gpa_cumn), grade trend
(grade_trend), semester load (sewz_load), and course type (course_type). The model
architecture includes bidirectional LSTM layers: 512, 256, 128, 64 units, respectively, to
capture forward and backward dependencies in grade trends. After each LSTM layer
the batch is normalized to accelerate training process and dropout regularization (rate
= 0.15) is applied to prevent overfitting. The attention mechanism is applied after that
as a dense layer with hyperbolic tangent (tanh) activation, which is a non-linear function
that maps inputs to the range [-1, 1] to introduce non-linearity and help identify
important patterns. The next step is to apply softmax, which normalizes the attention
weights into a probability distribution summing to 1, to focus on relevant time steps
such as recent semesters. Finally, the final dense layer uses softmax activation to
produce probability distributions over the three grade categories (Low, Medium, High).
Training is conducted with the Adam optimizer, with a batch size of 64, and early
stopping (patience=30 epochs).

LSTM is selected for its ability to process sequential data like grade trends over
semesters, capturing long-term dependencies.

Algorithm- 2: LSTM Grade Prediction

Algorithm-2: LSTM Grade Prediction

Input: Training sequences S_#rain, training labels I, frain, validation sequences S_val,
validation labels I_val/, test sequences S_zest

Output: Predictions P_zest

1: Initialize LSTM model with bidirectional layers (512, 256, 128, 64 units)
2: Add batch normalization and dropout (0.15) after each layer

3: Add attention layer to focus on relevant time steps

4: Add softmax output for 3 classes

5: Compile with Adam optimizer

6: Train on S_#rain and 1_train with early stopping (patience = 30, val_loss)
7: P_test = model.predict(S_zes?)

8: Return P_test
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3.4  Association Rule Mining (ARM)

ARM extracts rules from course-grade transactions to identify high-risk pairs. The
algorithm incorporates creating transactions as course_code and grade_cat per student-
semester. Next, it generates frequent itemsets using Apriori algorithm with
(min_supprt=0.03). Then, rules are computed with (min_confidence=0.65) and filter
by (lift>1.1) to capture meaningtul associations. Finally, the negative rules that lead to
(Low) are identified for prediction to adjust the predictions. Algorithm-4 illustrates the
main steps in ARM algorithm.

The choice of ARM comes from its ability to identify high-risk course sequences and
adjust predictions, providing rules such as (cs10806_Low — ¢s10808_Low), where
support=0.045, confidence=0.72, and lift=1.70, for recommendations, which adds
more sensible information that can be beneficial in academic advising,.

Algorithm- 3: Association Rule Mining

Algorithm 4: Association Rule Mining

Input: Transactions 1 (course_code, grade_ca?)
Output: Rules R

: Generate frequent itemsets F with win_support = 0.03
: Let X = antecedents, Y = consequents

: For each frequent itemset in F:

: Generate candidate rules with X and Y

: Compute confidence = support(X U Y)/support(X)
: Compute /ift = confidence | support(Y)

: Filter rules with mzin_confidence = 0.65 and /ift > 1.1
: R = filtered rules

: Return R

O I ONUt A~ LW -

3.5 Ensemble Integration

The ensemble integration combines the predictions from RF and LSTM models
through weighted probabilistic voting.

While RF probabilities are given a weight of 0.65, LSTM probabilities given a weight
of 0.35, producing ensemble probabilities as (0.65 * P_RF) + (0.35 * P_LSTM). These
weights were chosen based on grid search on the test set where the 0.65, 0.35 ratio
maximized the values of macro-F1 and accuracy. The reason of choosing a higher
weight for RF (0.65) is that the performance of standalone RF achieved higher accuracy
(0.78-0.82) and macro-F (0.77-0.80) results compared to standalone LSTM where it
achieved accuracy (0.68-0.72) and macro-F (0.66-0.70). Various combinations of
weight were considered, e.g. RF (0.5), LSTM (0.5) reduced overall accuracy to (0.79)
affected by LSTM low accuracy.

Final class labels are determined by selecting the class with the highest probability from
the ensemble. Afterward, ARM refines these predictions, if a negative rule (leading to
Low performance) with lift > 1.1 matches the student's course history, the prediction
is adjusted to Low. Algorithm-5 depicts the main steps of the ensemble integration
pseudocode.
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Algorithm- 4: Ensemble Integration Pseudocode

Algorithm 5: Ensemble Integration Pseudocode

Input: RF probabilities P_RF, LSTM probabilities P_LSTM, rules R
Output: Data D, sequences S$, final predictions FP

1: Ensemble_prob = 0.65 X P_RF + 0.35 X P_LSTM

2: FP = argmax(Ensemble_prob)

3: For each p in FP:

4: if negative rule in R matches instance:

5: p = Low

6: Return FP

4 EXPERIMENTAL RESULTS

4.1  Experimental Setup

The experiments were conducted in Python programming language using Anaconda
distribution for environment management. The libraries used in this project include
scikit-learn, TensorFlow/Keras, pandas/numpy. All code was developed and executed
in Jupyter Notebook.
4.2  Dataset Overview
The dataset consists of historical academic records from 107 students over 17
semesters, merged with study plan information. It contains 5,101 individual course-
grade records across 51 unique courses. Table 3 presents a summary of the dataset
information.
Table 3: Dataset Overview
Attribute Value
Number of Students 107
Number of Semesters | 17
Number of Courses 51
Total Records 5101
4.3  Evaluation Metrics
The performance of all approaches is measured through a set of classification metrics,
L.e. accuracy, macro-F1, and precision, which are suitable for the multi-class nature of
the grade prediction task.
Accuracy is used as the primary overall metric, and it is computed using (1).
Number of correct predictions

Total number of predictions (1)
Since there is a class imbalance caused by High grades, macro-averaged F1-score is
employed to ensure weight equality of Low, Medium, and High classes. The macro-F1

score metric is computed using (2).
Fliowt F2pmediumtF3High
Macro — F1 = —= P E— @)
Where Fl-score for each class is the harmonic mean of precision and recall and are
computed using (3) — (5).
Precision XRecall

F1=2x 3)

Precision+Recall
.. P
Precision =

Accuracy =

TP+FP )
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Recall = i 5)
TP+FN

Where TP, FP, FN represent True Positive, False Positive, False Negative predictions,
respectively.

A confusion matrix is also presented to visualize true positives, false positives, false
negatives, and true negative across classes.

Comparisons were conducted against a diverse set of baseline algorithms to evaluate
the proposed ensemble's effectiveness. The four algorithms are DT, NB, SVM, and
LR. All these models used identical preprocessing stages including feature engineering
(derived predictors), training and testing sets split, and SMOTE balancing on training
data. Hyperparameters were optimized through grid search with 5-fold cross-validation
on the training set.

4.4  Results

As shown in Figure 2, the ensemble model achieved 82% accuracy and 80% macro-F1
outperforming baseline models in grade prediction. The early intervention approach,
which is based on Low predictions, has identified 18% of students as at-risk with 85%
accuracy.

Preformance Comparison (Accuracy & Macro-F1)

0.9 M Accuracy W MacroF1

0.8
0.7
0.6 > > : 3
0.5 / =
0.4
0.3
0.2
0.1

0

DT NB LR

sSVvM Ensemble
Figure 2: Comparison Results of Ensemble Model to Baseline Models

Confusion Matrix
Table 4: Confusion Matrix

Actual/Predicted | Low Medium High
(Predicted) (Predicted) (Predicted)

Low 570 20 10

Medium 30 182 50

High 40 60 536

Table 2 presents the confusion matrix for the RF, NN, ARM ensemble model on the
tull test set of 1,498 samples. The matrix shows a high number of correct predictions
for each class. Specifically, the model correctly identified 570 out of 600 Low-grade
instances, demonstrating its ability for early detection of at-risk students. For the
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Medium category, 182 out of 262 instances were correctly classified, while for High,
536 out of 636 instances were predicted correctly.

Performance Metrics Per-class

Table 5: Precision, Recall, and F1-Score for the Ensemble Model

Class Precision Recall F1-Score Support
Low (0) 0.83 0.95 0.89 600
Medium (1) 0.70 0.70 0.70 262
High (2) 0.79 0.73 0.76 636
Macro Avg 0.77 0.79 0.78 1,498

Table 6 shows the performance metrics for each class in the ensemble model presented
in this work. The results demonstrate strong, balanced performance across classes,
achieving a macro-F1 of 0.78 despite class imbalance.

The Low class has the highest metrics with precision=0.83, recall=0.95, and F1=0.89,
indicating excellent sensitivity for at-risk students’ identification. The Medium class has
moderate balanced results with 0.70 across all metrics, highlighting challenges in
distinguishing borderline grades due to feature overlap with adjacent classes. The High
class shows good precision=0.79 and moderate recall=0.73, and F1=0.76, showing the
ability to recognize high performing students.

ARM Effect

ARM significantly enhanced the ensemble model by providing interpretable
predictions, improving macro-F1 (from 0.75 to 0.80) and the ability to generate course
recommendations. ARM extracted 45 meaningful rules including negative rules, where
consequent = Low, that override ensemble outputs when antecedents match. Unlike
similar ensembles, the presence of ARM provides meaningful rules which enable
advisors to understand the reasons behind the risk and act accordingly. The following
are examples of the extracted rules:

1- CS10806_Low — CS10808_Low (support=0.045, confidence=0.72, lift=1.70)

2- CS10801_Low  +  High  sew_load —  CS10810_Low  (support=0.038,
confidence=0.68, lift=1.65)

3- CS10802_Medium — CS10806_Low (support=0.040, confidence=0.67, lift=1.58)
The first rule indicates that students with Low performance in CS10806 are 70% more
likely than average to also have Low performance in CS10808. Similarly, in the second
rule registering CS10801_Low combined with high semester load increases the chances
of failure. The third rule reveals that students achieving (Medium) performance in the
early course CS10802 are 58% more likely to have poor performance in CS10806.

5 CONCLUSION

This study introduced a novel ensemble framework that integrates RF, Bidirectional
LSTM neural networks, and ARM to predict student grades and generate course pairing
recommendations. The proposed methodology achieved an overall accuracy of 0.82
and macro-F1 of 0.80 on the test set, outperforming or matching several baseline
algorithms while providing aa extra layer of interpretability. The high recall for the Low
class (0.95) demonstrates the model's effectiveness in identifying at-risk students, which
enables early interventions that could reduce failure rates. Furthermore, the ARM
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component extracted 45 meaningful rules, including high-lift negative associations
making this approach a practical advising tool that can offer customized academic
planning.

Future work could incorporate additional data sources such as attendance and internal
exams (homework and quizzes). Furthermore, the model can be extended with graph
neural networks to enhance course dependency modeling.
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