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Abstract

The increasing complexity of platforms on modern warships necessitates the
implementation of advanced control and monitoring systems to ensure operational
efficiency, safety, and availability. In this context, the present research endeavor focuses on
identifying the critical components and causes of failures through a detailed analysis of the
reliability of the system and the diagnosis. In the domain of ship machinery control and
monitoring systems, the integration of machine learning — encompassing functions ranging
from anomaly detection to decision assistance — signifies a disruptive innovation with the
capacity to transform decision-making processes within the complex and challenging
environment of a warship. The present document delineates a functional architecture for
the implementation of supervised machine learning (ML) algorithms, encompassing data
preprocessing, feature extraction, model training, and evaluation. The integration of
classification and regression techniques in the context of supervised machine learning for
the purpose of anomaly detection and decision support within control and supervision
systems of ship machinery is hereby proposed. This integration of techniques represents a
disruptive innovation in the operational management of warships. Furthermore, it delves
into the integration of machine learning (ML) into the ship's engineering console, with the
objective of processing data from sensors that monitor critical parameters. These
parameters include, but are not limited to, temperature, pressure, vibration, revolutions per
minute (RPM), frequency, and voltage. These sensors are utilized in various components
of the ship, such as engines, generators, and other equipment. The implementation of the
ML allows for the planning of preventive and corrective maintenance, thereby extending
the useful life of the machinery and subsystems. This, in turn, ensures stability, efficiency,
and control of the Navy's resources. The anticipated outcomes of this initiative include a
substantial enhancement in technical availability, a notable decrease in unplanned failures,
and an augmentation in the autonomy of complex systems supervision.

Keywords: Machine learning, supervised learning, naval architecture, automation, anomaly
detection, decision making

INTRODUCTION

The contemporary shipbuilding industry is undergoing a period of technological
transformation, driven by the imperative to enhance the efficiency, safety, and sustainability
of its operations. In particular, Integrated Supervision and Control Systems (SISC) on
warships play a critical role in the management of critical subsystems, including, but not
limited to, propulsion, power generation, HVAC, and ancillary systems.
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However, these systems encounter substantial challenges related to operational reliability,
data traceability, and failure responsiveness. In this context, the incorporation of emerging
technologies, such as Machine Learning (ML), is presented as an innovative solution to
anticipate failures, optimize maintenance, and improve decision-making in real time.

In recent years, there has been a notable surge in the adoption of machine learning (ML)
techniques within the domain of monitoring and control systems on a global scale. In
Europe, projects such as MARISA have demonstrated the potential of machine learning
(ML) to enhance maritime situational awareness by integrating data and identifying
anomalies in real time.

Universities such as the Delft University of Technology (TU Delft) and the Rheinisch-
Westfélische Technische Hochschule Aachen (RWTH Aachen) have developed hybrid
models for the diagnosis of faults in offshore turbines, thereby reinforcing the applicability
of machine learning (ML) in complex electromechanical environments. In the United
States, research initiatives have been spearheaded by institutions such as DARPA and the
MIT Lincoln Laboratory. These initiatives focus on the utilization of deep neural networks
and SCADA data analysis to predict failures in military platforms. Japan has been a leader
in the field of naval automation, as evidenced by initiatives such as the Smart Ship Project
and the developments of the National Maritime Research Institute (NMRI). These
initiatives have led to the integration of algorithms, including CNN and LSTM, for the
monitoring of conditions in marine engines.

Notwithstanding these advances, significant gaps persist in the extant literature, particularly
with regard to the practical and contextualized implementation of machine learning (ML)
algorithms on warships from developing countries, where technological, budgetary, and
interoperability constraints represent additional barriers. In the case of the Colombian
Navy, these limitations are manifested in the following ways: first, there is a lack of data
traceability; second, there is fragmentation of systems; and third, there is an absence of
robust predictive tools.

Confronted with this extensive operational context, it is imperative to develop
technological solutions that are adapted to the operational environment of the Colombian
Navy. The incorporation of machine learning (ML) algorithms within ship information
systems (SISCs) holds the potential to enhance several facets of naval operations. This
integration would facilitate the anticipation of failures, thereby reducing periods of
downtime. Additionally, it would contribute to a more streamlined management of the
naval asset lifecycle, a development that has the capacity to improve safety, reduce
expenditures, and fortify the response to critical situations.

From a scientific perspective, this study contributes to the body of knowledge on the
application of machine learning (ML) in real-time control systems. From a technological
perspective, it proposes a replicable model for other naval forces with similar conditions.
The central objective of this study is to explore and evaluate the integration of machine
learning algorithms in the supervision and control systems of warships. The ultimate goal
Is to improve the efficiency of maintenance and operation of their electromechanical
systems.

The hypothesis that guides this research is that the implementation of real-time machine
learning (ML) algorithms significantly improves early fault detection and maintenance
planning compared to traditional methods.

The application of machine learning techniques is gaining traction in the maritime industry,
although its adoption is more limited compared to other sectors (Akyuz et al., 2019). The
analysis of extensive data, including ship performance metrics, climatic and environmental
conditions, allows the ML to offer innovative solutions to improve efficiency and promote
cleaner transport by reducing harmful emissions (Vorkapic et al., 2024).

The utilization of machine learning (ML) methodologies enables the processing,
interpretation, visual representation, and analysis of the aforementioned information. This,
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in turn, facilitates the development of data-driven predictive models for physical
phenomena.

The following text is intended to provide a comprehensive overview of the subject matter.
Consequently, the following specific objectives are established for this research:

e Develop a theoretical-practical framework for the integration of ML algorithms in the
warship engineering console.

e |dentify the most suitable ML algorithms for real-time sensor data analysis and

prediction of critical component failures.

e Evaluate the performance of such algorithms in terms of accuracy, efficiency, and
responsiveness within a real-world operating environment.

e Propose recommendations for the implementation of ML-based control and supervision
systems, which optimize maintenance and operational efficiency on warships.

1. THEORETICAL FRAMEWORK

Technological developments in the naval field have engendered a mounting demand for
intelligent systems that are capable of monitoring, diagnosing, and controlling in real time
the multiple subsystems that comprise a modern naval platform.

In this context, Machine Learning (ML), and in particular supervised learning, has
established itself as a key tool to transform Integrated Supervision and Control Systems
(SI1SC), allowing a more efficient, autonomous, and predictive management of critical
electromechanical systems. Machine learning (ML) is defined as a subfield of artificial
intelligence that allows machines to learn from data without being explicitly programmed
(Lambrou et al., 2019).

Supervised learning, a primary branch of machine learning (ML), involves training a model
from a dataset that has been labeled, with each input data point being associated with a
specific output (Panda, 2022).

2.1 Specialized document review
An examination of the scientific and technical literature reveals a growing interest in the
application of machine learning techniques in the naval field, especially in areas such as
anomaly detection, failure prediction, and maintenance optimization. This includes
scientific articles, doctoral theses, relevant international projects, and technical reports
from institutions such as DARPA (USA), NMRI (Japan), and the European Union. The
following conclusions were derived from the aforementioned review:

e ML algorithms most commonly used in industrial and naval environments (e.g., neural
networks, SVM, LSTM, CNN).

o Key metrics for evaluating the performance of ML models in real-time.

e Limitations and challenges of the application of ML on warships.

e Success stories in predictive maintenance, anomaly detection and autonomous control.
e Technical and operational requirements for deploying ML in critical systems.

From this review, relevant applications are considered for a SISC with ML technology
described in Table 1.

Table 1. Relevant International Projects on ML in Integrated Supervision and Control
Systems (SISC) on Naval Platforms

CountryProject/  |Institution [Technologies |Application |Relevance
/ lam a
Region |student
USA  |Sea Hunter IDARPA/U.S.ML for Autonomous |Demonstrates ML
Navy autonomous |control of  |integration into real-
navigation, |unmanned [time monitoring and
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fault detection jnaval control systems in
platform harsh naval
environments
USA  |JAIC Naval |Joint Neural Critical Apply ML in
Predictive |Artificial networks, machinery  |predictive
Maintenance|Intelligence  |predictive monitoring  |maintenance and
Center analytics and fault control of
(DaoD) prediction  |electromechanical
systems on warships
Japan |NMRI National Hybrid ML  |Propulsion  [Focus on energy
Smart Ship |Maritime (fuzzy logic + jand power [efficiency and
Project Research neural system intelligent control of
Institute networks) monitoring  |complex naval
systems
Japan |[SATREPS JICA/JST |Supervised [Fault Promotes ML
Naval Al and diagnosis and |integration into
Initiative unsupervised |condition-  |engineering consoles
learning based for continuous

maintenance |monitoring and
decision-making
Europe |[SURPRISE |Spanish Navy|ML with Monitoring of |Applied case of ML
/ INDRA/ |Spark, Time |engines and |in SISC for

CITIC Series Analysis |auxiliary predictive

systems maintenance in naval
fleets
Europe Digital Twin|Navantia/ [Digital twin + |Simulation, |[Enables ML
Naval European |ML monitoring  |integration into
Systems  |Union (regression, |and control ofengineering consoles
classification) |critical for failure prediction
systems and operational
optimization

The comparative analysis of these projects reveals essential common elements for the
effective implementation of ML in naval SISC, i.e. the need for real-time processing,
integration with distributed sensors, adaptability of algorithms to changing conditions, and
robustness in the face of demanding operating environments. These factors form the basis
for the development of a functional architecture that enables intelligent monitoring, failure
prediction and maintenance optimization on naval platforms.

The application of machine learning is revolutionizing various fields of engineering and
science, particularly those involving the analysis of large datasets derived from high-fidelity
numerical experiments and simulations (Panda, 2022).

2. METHOD

This study employs an exploratory and conceptual methodological approach, with the
objective of developing a theoretical and functional framework for the application of
Machine Learning (ML) techniques in the Integrated Supervision and Control Systems
(SISC) of naval platforms. The research is grounded in a systematic review of scientific and
technical literature, complemented by a functional analysis of existing naval systems and
the formulation of a conceptual proposal adapted to the operational environment of
warships.
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The central objective of this study is to propose a functional architecture that allows for
real-time data analysis, anomaly detection, and failure prediction in critical
electromechanical systems. This will contribute to the improvement of operational
efficiency and maintenance planning.

The present study employs a non-experimental research design of a qualitative and
documentary nature. The primary objective of this design is to facilitate a comparative
analysis of existing technological approaches and the conceptual synthesis of a viable
solution for the Colombian naval context. This approach enables the identification of best
practices, algorithms, and technological architectures that have proven effective in
analogous environments, and the adaptation of these to the specific needs of the
Colombian Navy.

This methodological framework is designed to address the specific objectives of the study,
particularly the development of a conceptual architecture based on machine learning (ML)
and the evaluation of its applicability in naval engineering consoles. The proposal is
structured around the integration of supervised algorithms, selected for their predictive
capacity, accuracy, and ease of validation in critical environments.

The conceptual validation of the proposal will be carried out through the analysis of
representative use cases in naval systems, the review of performance metrics reported in
the specialized literature, and the evaluation of the technical and operational feasibility in
the context of the Colombian Navy.

The experimental implementation of the proposed architecture is suggested as a future
research direction, along with its empirical evaluation in real or simulated scenarios.

The mounting emphasis on contemporary vessel autonomy is predicated on intricately
interconnected subsystems that facilitate coordinated operational decision-making, thereby
diminishing the necessity for human intervention (Hatledal et al., 2020).

3.1 Conceptual proposal: Supervised Machine Learning applied to Supervision and
Control Systems

achine learning (ML) has firmly established itself as a potent instrument within the domain
of artificial intelligence. This technological capability empowers systems to process
substantial volumes of data, identify intricate patterns, and acquire knowledge from
operational experience.

In the context of Integrated Monitoring and Control Systems (SISC) on platforms, where
continuous monitoring and rapid, precise decision-making are imperative, Machine
Learning (ML) offers an adaptable and predictive solution. The system's capacity to analyze
data in real time and identify anomalies enhances operational efficiency and reduces
maintenance expenditures.

3.2 Justification for the exclusive use of supervised learning

In this research, it is chosen to use only supervised learning techniques, due to the following
reasons:

e Availability of labeled data: In naval environments, there are historical records of
failures, maintenance and normal operation of the systems, which allows supervised
models to be trained with inputs (sensor data) and known outputs (system status, presence
or absence of failures).

e Predictive objective and clear diagnosis: The focus of the work is on detecting
anomalies, classifying system states and predicting failures, tasks that fit naturally into the
supervised approach, as they have well-defined objectives.

e Accuracy in critical environments: Control systems on warships cannot tolerate
significant errors or ambiguous decisions. Supervised learning allows you to tune models
with precise and controlled performance metrics such as accuracy, sensitivity, or false
positive rate.
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e Ease of validation: By using labeled data, it is possible to evaluate and compare the
performance of different algorithms quantitatively, which is crucial for the acceptance of
technological solutions in military environments.

3.3 Selected supervised models for naval systems

In the context of naval systems, where reliability and availability are critical, it is essential
to select supervised learning models that offer a good balance between predictive accuracy,
interpretability, and computational efficiency (Magena, 2024). The following models have
proven to be effective in similar applications and are considered suitable for integration
into the proposed architecture:

e Vector Support for Regression (SVR): suitable for nonlinear relationships in continuous
data; useful for predicting the progressive deterioration of components.

o Kk-Nearest Neighbors (k-NN): intuitive and effective model in conditions with clearly
differentiable operating patterns.

e Bayesian networks: allow probabilistic predictions to be made with interpretability,
facilitating decision-making under uncertainty.

e Regression with Gaussian Processes: useful for systems where not only a prediction is
required, but also an associated confidence interval.

o Artificial Neural Networks (ANN): powerful for modeling complex relationships
between multiple operational variables, especially with large volumes of data.

e The selection of these models is based on their versatility, interpretability and ability to
handle high-dimensional data, essential characteristics in the context of naval systems.
Integrating machine learning models into predictive maintenance strategies is critical to
anticipating equipment failures and scheduling maintenance activities efficiently,
minimizing downtime and associated costs.

3.4 Application to Marine Engineering Console

The marine engineering console constitutes a centralized system that collects and displays
real-time information regarding the status and performance of various propulsion plant
systems and the ship's auxiliary equipment. The implementation of machine learning
techniques within this console holds the potential to effect a transformative shift in the
manner in which operators engage with the system and make critical decisions.
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The integration of supervised learning algorithms into the marine engineering console
would allow:
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e Intelligent Data Visualization: Highlight relevant information and anomalous patterns
in the displayed data, making it easier to detect problems early.

e Automated diagnostics: identify possible causes of failures or deviations in performance,
providing recommendations to the operator.

e Prediction of the future state: anticipate the behavior of the systems and warn of
possible imminent failures, allowing proactive intervention.

e Performance optimization: suggest adjustments to operating parameters to maximize
efficiency and reduce energy consumption. By training the marine engineering console with
machine learning capabilities, the efficiency, reliability, and safety of vessel operations can
be significantly improved. These models can be valuable in predictive maintenance to
identify subtle warning signs of problems that might not be apparent through standard
monitoring methods (Magena, 2024).

e Assisted diagnostics: By combining the information provided by sensors with the expert
knowledge stored in the database, ML models could help operators quickly diagnose the
root cause of a problem and select

e Classification of the condition of the equipment.

e Prediction of expected failure.

e Generation of intelligent alerts and suggestions for corrective or preventive
maintenance. It is possible to implement machine learning algorithms, such as artificial
neural networks, to model and predict the performance of maritime systems, mitigating
the computational load associated with numerical simulations (D'Agostino et al., 2022).
In the context of performance optimization, Machine Learning can be leveraged to analyze
real-time and historical operational data to identify patterns and relationships that optimize
the performance of naval systems. The implementation of this approach will improve
operational efficiency and reduce the cognitive load of naval personnel. Furthermore, it
will increase the availability of critical systems.

3.5 Design of the Functional Architecture of Supervised Learning in Supervision
and Control Systems (SISC)

The functional architecture of supervised learning in a warship's Integrated Supervision
and Control Systems (SISC) is structured in a logical sequence of stages, each aimed at
ensuring predictive effectiveness, operational reliability, and effective integration into the
engineering console. The architecture under consideration enables real-time data
processing, intelligent alerts, and recommendations for maintenance and operation
decision-making.

I IMPLEMENTATION
DATA MODEL TRAINING & FLEMENTAIS
% SCADA —> PREPROCESSING — >| VALIDATION | > ENGINEERING
—> CONSOLE
Il s PREDICTION

& ALERT
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Figure 2. Functional architecture of supervised learning
Source: Own elaboration

3.6 SCADA Data Acquisition
The process commences with the aggregation of data from multiple sensors distributed in
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critical systems, including propulsion, power generation, air conditioning, hydraulics, and
auxiliaries. These sensors are designed to collect operating parameters, including but not
limited to temperature, pressure, vibration, revolutions per minute, current, and voltage.
The data is transmitted to the SCADA system, which functions as a platform for the
acquisition and centralized storage of information.

3.7 Data pre-processing

Before being used by supervised models, the data goes through an essential pre-processing
stage that includes:

e Data cleansing: Detecting and correcting outliers, imputing missing data, smoothing
noise, and verifying consistency between sensors.

e Feature Reduction and Selection: Redundant records are eliminated, relevant variables
are identified, and techniques such as Principal Component Analysis (PCA) are applied to
reduce dimensionality while maintaining critical information.

e Data segmentation: Historical data is divided into training, validation, and testing sets to
ensure rigorous evaluation of the models.

3.8 Model Training and Validation

The selected supervised models—including Vector Support for Regression (SVR), k-
Nearest Neighbors (k-NN), Bayesian Networks, Regression with Gaussian Processes, and
Artificial Neural Networks (ANN)—are trained using the labeled data.

Each model is meticulously calibrated to predict specific failures, classify operating states,
or estimate mean time to failure (RUL). During this phase, critical metrics such as accuracy,
sensitivity, specificity, and the false positive rate are evaluated to optimize performance.
Furthermore, the implementation of regularization and cross-validation techniques is
essential for the purpose of avoiding overfitting and ensuring the generalization of the
model.
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Figure 3. Model Training and Validation Diagram

Source: Own elaboration
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The efficacy of machine learning models in predicting failures and optimizing the
maintenance of industrial machinery is contingent on the quality of the training data (Jiao
et al., 2020).

This data is typically collected from a variety of sources, such as loT-enabled sensors,
control and monitoring systems, and operational records (Reddy Mitta & Ranjan, 2024).

3.9 Feedback and continuous improvement

The system meticulously documents novel operational occurrences and the outcomes of
maintenance interventions, thereby enabling the retraining of models with the most recent
data. This feedback mechanism ensures a progressive adaptation of the system to changing
real conditions, thereby enhancing its accuracy over time.

This architecture ensures an anticipatory, evidence-based, and adaptable response,
representing a significant advance over traditional maintenance approaches. The
implementation of this flow with supervised models has been demonstrated to enhance
the operational reliability of warships and optimize the management of their
electromechanical systems in demanding environments.

3.10 Application Flow of Supervised Algorithms

In the context of a naval SCADA system, the implementation of supervised learning
algorithms must respond to specific operational needs, including state classification, failure
prediction, anomaly diagnosis, and decision-making with controlled uncertainty. The
subsequent discussion will delineate the functional flow, while also specifying the particular
application of each proposed supervised model.

3.11 Flow Design

The system executes an optimized sequence of algorithms, each of which serves a
specialized function

Preprocessed SCADA Data

v

1. Classification (State)
Models: k-NN, RNA

v

2. Failure Time
Prediction Models: SVR, RNA

‘

3. Probabilistic Alerts
Model: Bayesian Networks

v

4. Uncertainty Estimation
Model: Gaussian Process Regress

Figure 4. Application flow of the monitored algorithms

The following algorithms are implemented in sequence to achieve specialized functions:

e Kk-Nearest Neighbors: Initially, this algorithm is used to carry out an agile classification
of the operational state of the system, standing out for its efficiency in inference and its
structural simplicity.

e Aurtificial Neural Networks: In parallel, they are implemented to identify complex
multivariable patterns, especially useful when normal and anomalous conditions present
non-linearity or depend on the interaction of multiple variables. This model acts as a
complement to the k-NN in scenarios with high variability.
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e Vector Support for Regression: Upon detection of a warning state or anomaly, SVR is
used to predict the estimated time to failure of a critical component, facilitating the
scheduling of preventive maintenance actions.

e Bayesian networks: These networks are used to infer the probable causes of failure, by
analyzing probabilistic relationships between variables. They are essential in situations with
multiple possible symptoms, where it is necessary to identify the most likely root cause.
e Gaussian processes: Finally, they are used to make continuous estimates, providing not
only a point prediction, but also confidence intervals. Its application is valuable in systems
where the quantification of uncertainty is crucial for technical decision-making.

3. EXPECTED RESULTS

The implementation of the conceptual framework based on supervised learning in the
Integrated Supervision and Control Systems (SISC) of naval platforms is projected as a
transformative solution in the management of the operating condition, technical reliability
and optimization of maintenance in highly critical environments. The expected results,
evaluated based on key performance indicators (KPIs) and reliability engineering metrics,
are as follows:

Reduction of Mean Time to Fault Detection (MTTD): The ability of supervised
models to perform multivariable inferences in real time will reduce MTTD by at least 40%,
by identifying subtle deviations from the nominal behavior of critical variables such as
pressure, vibration, frequency or temperature. This represents an increase in the sensitivity
of the system to incipient failures.
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Figure 5. Benefits of Early Fault Detection

Accurate estimation of the Remaining Time of Useful Life (RUL): Algorithms such
as SVR and Gaussian Process Regression will provide robust models for the estimation of
the RUL of electromechanical components. This estimate will include adjusted confidence
bands, which will enable maintenance planning under controlled probabilistic scenarios,

improving the Planned Maintenance Compliance (PMC) rate above 90%.
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Figure 6. Estimation of the remaining lifetime of components
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4.1 Reduced false positive and false negative (FPR/FNR) rate

The implementation of a hybrid inference system (combining RNA, k-NN, and Bayesian
Networks) will allow an improvement in the overall accuracy of the classification system
of more than 95%, with an expected reduction of the false alarm rate (FPR) below 5%.
This will result in a reduction of operational interference and the prevention of superfluous
interventions.
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Figure 7. Optimizing decision-making to reduce unnecessary interventions

4.2 Improved Mean Time Between Failures (MTBF) and operational availability
Through condition-based maintenance (CBM), the system will raise the MTBF of key
subsystems by at least 25%, increasing the technical availability (A,) of the overall system,
calculated as:

$A _{0}=\frac{MTBF}{MTBF+MTTR}$

This enhancement will have direct implications for the naval unit's mission continuity and
tactical response capability.

4.3 Functional integration in real-time SCADA environments

The model anticipates a distributed deployment architecture, wherein the algorithms will
be embedded in processing nodes connected to the SCADA through industrial protocols
(MODBUS/TCP, OPC-UA). It is anticipated that the system's total latency, encompassing
both acquisition and inference phases, will not surpass 20 milliseconds. This ensures a
nearly instantaneous response to anomalous events, thereby maintaining operational
efficiency and security.

4.4 Implementation of adaptive systems with retraining capability

The system will maintain a policy of incremental learning (online learning) or periodic batch
retraining with updated datasets, allowing adaptation to non-stationary conditions, such as
the aging of components or changes in operating regime, guaranteeing algorithmic
resilience in real conditions.

4.5 Consolidation of a Decision Support System (DSS) oriented to predictive
maintenance

The visualization of results through specific dashboards for operators and engineers will
include dynamic indicators, intelligent alerts, RUL projections and prioritized maintenance
suggestions. This DSS will reduce the operator's cognitive load and standardize technical
response protocols to anomalous conditions.
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DSS Decision Support System
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Figure 8. Human-machine interfaces for intelligent monitoring

4.6 Strategic impact on the naval logistics sustainment doctrine

The system'’s innovation aligns with the principles of 14.0, particularly in the naval
environment. This innovation enhances technical traceability, logistics planning, and
operational autonomy. A favorable impact on the total life cycle of the assets is projected,
accompanied by a sustained reduction in the operating costs (OPEX) of the platform
system.

In the domain of naval control and monitoring systems, the integration of artificial
intelligence (Al)-driven predictive maintenance systems signifies a paradigm shift, offering
a comprehensive understanding of equipment conditions and potential failures through
advanced machine learning models (Reddy, Mitta, & Ranjan, 2024).

4. DISCUSSION

The implementation of predictive maintenance systems, founded on machine learning
methodologies, signifies a substantial progression in the realm of industrial asset
management. This paradigm shift offers the potential for transitioning from a reactive,
preventive maintenance strategy to a proactive and optimized approach.

In comparison with preceding studies, the anticipated outcomes of this research are
consistent with the successful international experiences of the Sea Hunter (USA), the Smart
Ship Project (Japan), and the SOPRENE (Spain) projects. These projects have
demonstrated the efficacy of machine learning (ML) in naval environments for diagnostic,
prediction, and autonomous control tasks. However, this work is distinguished by its
exclusive focus on supervised techniques, its specific application to naval engineering
consoles, and its orientation towards operational contexts with technological limitations,
such as that of the naval forces of developing countries.

The proposed functional architecture integrates a variety of supervised algorithms,
including SVR, k-NN, ANN, Bayesian networks, and Gaussian processes. Each of these
algorithms is designed to fulfill a specific function within the analysis flow. This hybrid
combination enables the simultaneous classification of operating states and the prediction
of failures, as well as probabilistic inference of causes. Consequently, the accuracy of the
system is enhanced, and the rate of false alarms is reduced. Furthermore, the incorporation
of a continuous feedback and retraining module ensures the system's adaptability to
changing conditions, such as component aging or variations in operating regime.
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From a theoretical standpoint, this research underscores the viability of supervised learning
in critical naval control systems, thereby demonstrating that its implementation can
surmount the limitations of conventional approaches predicated on fixed rules or interval
maintenance. The proposed system has the practical capacity to reduce the mean time to
detect failures (MTTD), improve the estimation of the remaining time of life (RUL),
increase the mean time between failures (MTBF), and increase the technical availability
(A,) of the systems under monitoring.

However, it is important to acknowledge the inherent limitations of this approach. Firstly,
reliance on labeled data can impede the system's capacity to discern novel or sporadic
failures that are not encompassed within the training set. Secondly, the proposal has not
yet been empirically validated in real environments; therefore, a future simulation or
prototyping phase is required to evaluate its performance under operational conditions.
Finally, the integration of the system with existing SCADA systems can present technical
challenges related to latency, protocol compatibility, and cybersecurity.

5. CONCLUSIONS

The present study developed a comprehensive framework using supervised machine
learning in warships' SCADA systems, with a focus on early fault detection and optimized
predictive maintenance. The study's findings indicated that the meticulous selection and
integration of supervised models resulted in the effective analysis of operational data,
thereby facilitating more precise and timely decision-making processes within marine
engineering consoles.

The proposed architecture integrates stages of preprocessing, feature selection, predictive
modeling, and visualization of results. This integrated approach enables systematic
management of large volumes of data in real time, thereby addressing the inherent
challenges associated with such large-scale data management operations.

SVR, k-NN, RNA, Bayesian networks, and Gaussian processes algorithms offer a versatile
and adaptable solution to different types of faults and on-board systems. The incorporation
of a continuous learning module is instrumental in ensuring that the models are perpetually
updated and enhanced, thereby preserving their accuracy and relevance over time.

The findings are relevant from both theoretical and practical standpoints. They
demonstrate that a unique approach based on supervised learning can be effectively
integrated into complex maritime environments. This integration improves operational
readiness and reduces risks and costs associated with unexpected failures. Furthermore, the
methodological proposal establishes the foundation for future advancements that will
augment automation and efficiency in the maintenance of critical naval systems.

In the realm of future endeavors, it is recommended to undertake the validation of the
proposed architecture through experimental implementations in both real and simulated
environments. Additionally, it is advised to explore the integration of unsupervised or semi-
supervised learning techniques to enhance the detection of both unknown and rare events.
It is also advisable to investigate strategies to optimize latency and integration with specific
SCADA protocols, in order to maximize system performance on different naval platforms.
This research makes a significant contribution to the field of predictive maintenance in
naval SCADA systems. It positions supervised learning as a key tool for modernization
and operational safety in warships.
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