

Knowledge and Awareness of Ankylosing Spondylitis among Saudi General Population in KSA

Amro Faisal Albaz¹, Ibrahim Khalid Alghamdi², Saleh Abdulrahman Almudayfir³, Seham Salem Almohammadi⁴, Sarah Salem Almohammadi⁵, Sadeem Sameer Badgaish⁶, Fahad Saeed Alahmari⁷, Nader Saleh Alsaiari⁸, Faisal Mohammed Alatawi⁹, Khalid Abdulhadi Alshehri¹⁰, Hoda Jehad Abousada¹¹, Mohammed Faris Idriss¹², Fatema Jehad BinRajab¹³, Abdulaziz Osama Okal¹⁴ and Sarah Khaled Alharbi¹⁵

¹ Orthopaedic Surgery Consultant, Adult and Pediatric Spine Surgery, Jeddah, KSA
Dr.amroalbaz@gmail.com

² Orthopedic Surgery Resident, King Fahad General Hospital, Albaha, KSA
i.k.alghamdi266@gmail.com

³ General Surgery Resident, Saudi Board, Qassim Health Cluster, Qassim, KSA
S.almudayfir@gmail.com

⁴ Internal medicine resident, King Fahad Hospital, Madinah, KSA Seham92.sm@gmail.com

⁵ Corresponding Author, Internal medicine resident, King Fahad Hospital, Madinah, KSA
dr.sarah95sa@gmail.com

⁶ Internal Medicine Resident, Care Medical Hospital, Riyadh, KSA Sadeem15sb@gmail.com

⁷ Internal medicine Resident, Asir Central Hospital, Abha, KSA
Fahadalahmari96@gmail.com

⁸ Physical therapy specialist, Almoosa Rehabilitation Hospital, Riyadh, KSA
naderalsaiari@gmail.com

⁹ MBBS, Medical Doctor, king Khalid hospital, tabuk KSA faisalmsatawi@gmail.com

¹⁰ MBBS, Medical Doctor, Um Sarrar primary health care center, Khamis mushayt, KSA
Mr.5ad@hotmail.com

¹¹ Obstetric & Gynaecology, KFSHRC, KSA Dr.Huda1992@outlook.com

¹² MBBS, Medical Doctor, Second Health Cluster, Jeddah, KSA
Dr.mohammedfidriss@gmail.com

¹³ MBBS, Medical Intern, Salmaniya Medical Complex, Bahrain
Fatemanrajab15@gmail.com

¹⁴ MBBS, Medical Intern, Jeddah university, Jeddah, KSA azizookal@gmail.com

¹⁵ Pharm D, Intern, King Abdulaziz University, Jeddah, KSA Sarahalharbi1803@gmail.com

ABSTRACT

Objective: The aim of the research is to determine the general population's knowledge and awareness of ankylosing spondylitis in Saudi Arabia and to determine the sociodemographic characteristics linked to higher or lower awareness levels. The study will also investigate common misunderstandings or knowledge gaps about the symptoms, causes, and therapies of AS.

Methods: Ankylosing Spondylitis (AS) knowledge and awareness among Saudi Arabia's general public will be evaluated through the use of a cross-sectional descriptive research design. Cost-effective and useful for large population-based surveys, this design is appropriate for capturing a moment in time of popular knowledge.

Results: The study included 350 participants. The most frequent age among them was 30-39 years old (n=106, 30.3%), followed by 18-29 years old (n=98, 28%), then 40-49 years old (n=74, 21.1%), and 50-59 years old (n=53, 15.1%). The most frequent gender among study participants was male (n=189, 54%) and female (n=161, 46%). The most frequent nationality among study participants was Saudi (n= 325, 92.9%), followed by non-Saudi (n= 25, 7.1%). Educational Qualification among study participants, with most of them were Bachelors (n=242, 69.1%), followed by High School (n=76, 21.7%), then Master's (n=32, 9.1%). Occupation among study participants, with most were employed (non-healthcare) (n=173, 49.4%), followed by Unemployed (n=56, 16%), then Employed (Healthcare) (n=49, 14%), and Student (n=40, 11.4%). Participants were asked Do you suffer from any chronic back or joint pain? Most of them answered No (n=223, 63.7%) and Yes (n=127, 36.3%). The participants were asked heard of Ankylosing Spondylitis; most of them answered No (n=291, 83.1%), and Yes (n=59, 16.9%). The diagnosis of cancer is presented in Figure 4. Participants were asked where Ankylosing Spondylitis was more common. Most of them answered I don't know (n=187, 53.4%), followed by Women (n=71, 20.3%), then equally common (n=58, 16.6%), at least Men (n=34, 9.7%). Participants were asked Do you personally know anyone diagnosed with AS The most frequent answer No (n=315, 90%), followed by Yes - relative or colleague (n=22, 6.3%), then Me (n=13, 3.7%). Participants were asked in their opinion, how serious Ankylosing Spondylitis is as a health condition; Most of them were I don't know (n=185, 52.9%), followed by Somewhat Serious (n=102, 29.1%), then Very Serious (n=49, 14%), and at least Not Serious (n=14, 4%).

Conclusion: The results showed statistically significant associations between knowledge about Ankylosing Spondylitis and each of age, nationality, educational qualification, occupation, and prior awareness of the disease, while no significant association was found with gender.

INTRODUCTION

The axial skeleton, especially the spine and sacroiliac joints, is the primary site of ankylosing spondylitis (AS), a chronic, progressive, inflammatory rheumatic illness. If left untreated, it usually starts in young adulthood and can result in spinal fusion and severe disability. The estimated prevalence of AS varies greatly by geography and ethnicity, ranging from 0.1% to 1.4% worldwide. Due to a lack of public awareness, poor access to rheumatological treatments, and the overlap of early symptoms with more prevalent causes of back pain, AS is thought to be underdiagnosed and underreported in Arab nations, especially in the Middle East. Due to a dearth of extensive epidemiological investigations, the precise frequency of AS in Saudi Arabia is still mostly unknown. [1], [2]

Nonetheless, regional reports and certain hospital-based data indicate that AS might be more common than thought, particularly among young Saudi men. The frequency of HLA-B27, one of the main genetic markers linked to AS, differs among ethnic groups. [3] Although HLA-B27 is less prevalent in Saudi Arabians than in Caucasian groups, AS cases with notable clinical implications are still observed. This emphasizes how crucial clinical suspicion is in addition to genetic susceptibility. [4]

Early AS symptoms are frequently mild and can be mistaken for musculoskeletal strains or mechanical back pain, which delays diagnosis. Chronic lower back discomfort that gets better with movement, morning stiffness, exhaustion, and occasionally peripheral joint involvement and uveitis are among the symptoms. [5] Between five and ten years may pass between diagnosis and irreparable spinal injury. Therefore, public awareness is essential for early detection and intervention, particularly among those between the ages of 18 and 40. [6] Individuals with ankylosing spondylitis experience decreased mobility, discomfort, exhaustion, and related comorbidities like depression and cardiovascular risks, which negatively impact their quality of life in addition to their physical health. When the illness is detected early and treated with pharmacologic medications (NSAIDs, biologics) and lifestyle changes (exercise, physical therapy), these effects can be greatly minimized. [7], [8]

Even with its severe long-term effects, AS is still one of the least well-known autoimmune diseases in the general public, particularly in non-specialist and community contexts. Public awareness of autoimmune illnesses, particularly AS, is low in Saudi Arabia. [9] Current awareness initiatives tend to overlook rheumatologic disorders in favor of more well-known conditions like diabetes and hypertension. [10]

Proactive measures are needed to increase awareness, enhance health-seeking behavior, and shorten diagnostic delays since noncommunicable and chronic diseases are placing a growing load on Saudi healthcare systems. Increasing people's knowledge of AS, including its warning signals, risk factors, and available treatments, can motivate them to consult a doctor sooner. Additionally, it might enhance patient outcomes and lower medical expenses related to problems and late-stage management. [11], [12]

Furthermore, if the baseline level of knowledge is established, it is possible to educate the public as digital media and public health campaigns have grown in Saudi Arabia through platforms including social media and the Ministry of Health's mobile applications. There is a dearth of baseline information, though, regarding the general public's awareness of AS and their opinions regarding its severity and management. [14], [15]

As a result, the purpose of this study is to evaluate the general Saudi population's knowledge and awareness of ankylosing spondylitis while investigating the ways in which demographic factors like age, gender, education, and occupation affect perceptions and thoughts about the condition. [13] Policymakers and health educators can use the research's findings to create culturally appropriate educational materials and focused awareness campaigns that support early diagnosis and improved illness outcomes.

METHODS

Study design

Ankylosing Spondylitis (AS) knowledge and awareness among Saudi Arabia's general public will be evaluated through the use of a cross-sectional descriptive research design. Cost-effective and useful for large population-based surveys, this design is appropriate for capturing a moment in time of popular knowledge.

Study approach

The study will be carried out in a number of locations throughout the Kingdom of Saudi Arabia, including both urban and rural areas from important provinces like Riyadh, Jeddah, Dammam, Abha, and Al-Madinah.

Saudi nationals and residents who are at least eighteen years old and come from a variety of educational and professional backgrounds make up the target population.

Study population

The study will be carried out in a number of locations throughout the Kingdom of Saudi Arabia, including both urban and rural areas from important provinces like Riyadh, Jeddah, Dammam, Abha, and Al-Madinah.

Saudi nationals and residents who are at least eighteen years old and come from a variety of educational and professional backgrounds make up the target population.

Study sample

In order to include all the above said types of respondents the researcher has chosen stratified random sampling procedure based on the age, location, medical history and other related components. Based on patient volume and accessibility, location will be selected for right kind of respondents.

Study tool

For the current study, a questionnaire was used for data collection and was also considered a study tool.

Data collection

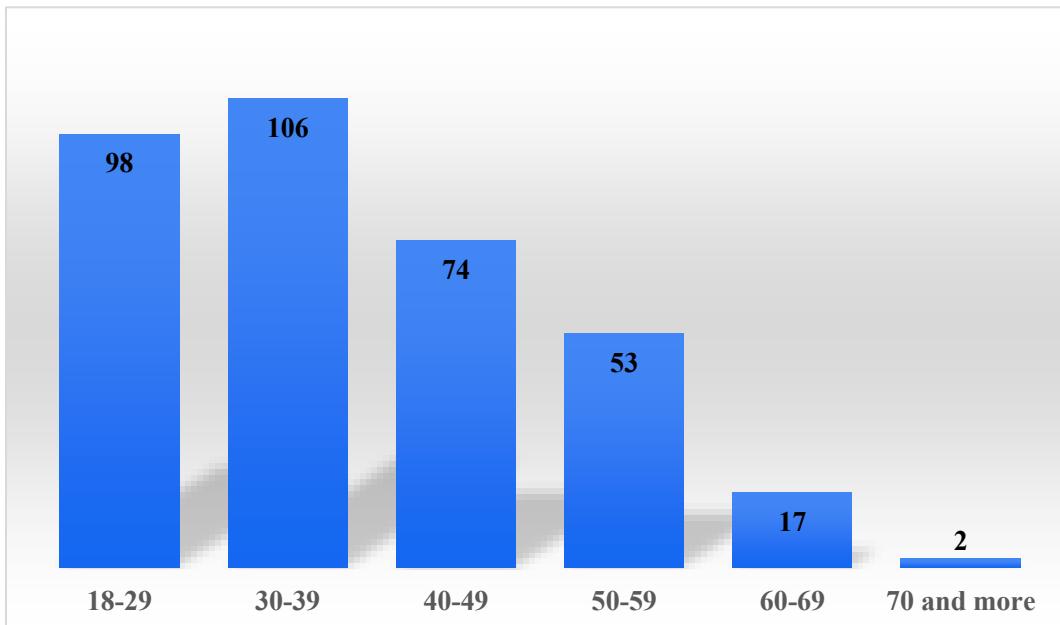
The main instrument for gathering data will be a standardized and tested questionnaire.

Among them will be—

- Information about demographics (e.g., age, gender, location, occupation, education, etc.)
- Knowledge items (definition, causes, symptoms, diagnosis, and therapy)
- Things that raise awareness (media coverage, health initiatives, sense of gravity, etc.)

In order to ensure validity, reliability, and clarity, the questionnaire will be pretested on thirty volunteers in both Arabic and English.

Data analysis


- Using SPSS software version 26, data will be entered and examined.
- Frequency, percentage, mean, and standard deviation are descriptive statistics that will be used to describe answers and demographic data.
- ANOVA, t-tests, or chi-square tests will be performed to investigate correlations between awareness levels and demographic factors.
- The aggregate of the right answers will determine the participants' knowledge score, which will then be used to classify them as low, moderate, or high awareness.

Ethical considerations

It will be carried out on 10% of the total respondents (may be 30-40), and the results will be checked thereof. Further, any type of discrepancy will be removed, and the questionnaire or data sheet will be revised. A pilot study may also be conducted to state the precision level of the statistical tools and even the selection criteria of the respondents. The above-stated process will be followed throughout the pilot study, and the outcomes will be analyzed. The duration, manner, and viability will also be evaluated.

RESULTS

The study included 350 participants. The most frequent age among them was 30-39 years old (n=106, 30.3%), followed by 18-29 years old (n=98, 28%), then 40-49 years old (n=74, 21.1%), and 50-59 years old (n=53, 15.1%). Figure 1 shows the age distribution among study participants. The most frequent gender among study participants was male (n=189, 54%) and female (n=161, 46%). Figure 2 shows the gender distribution among study participants. The most frequent nationality among study participants was Saudi (n= 325, 92.9%), followed by non-Saudi (n= 25, 7.1%). Figure 3 shows the distribution of Gender among study participants.

Figure 1: Age distribution among study participants

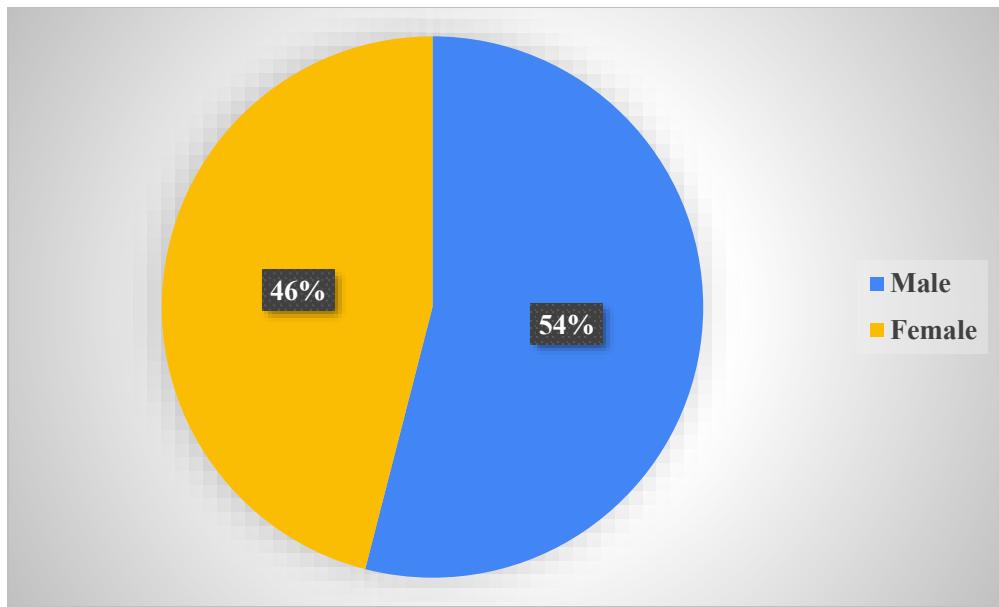


Figure 2: Gender distribution among study participants

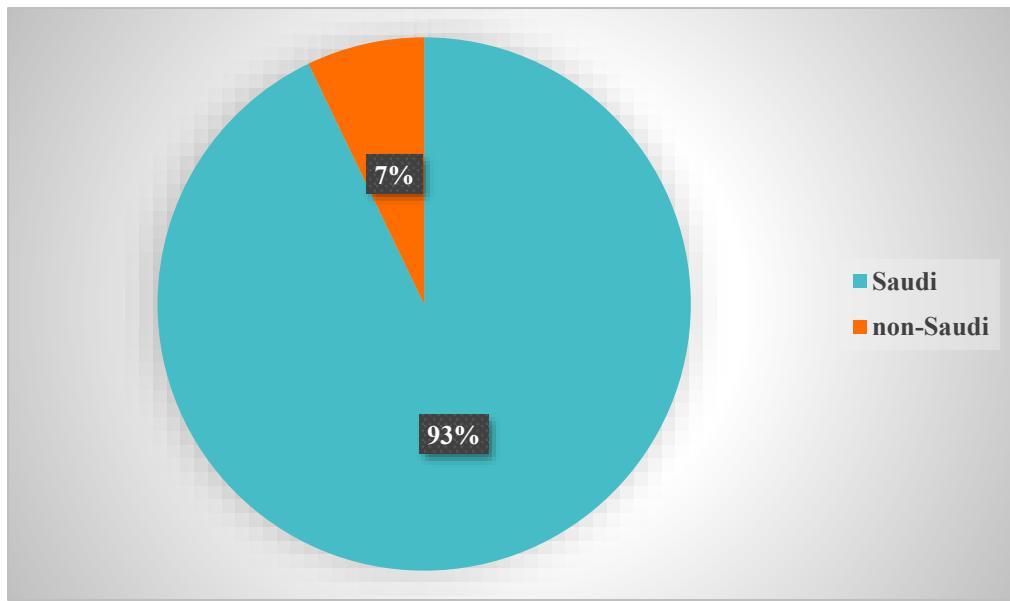
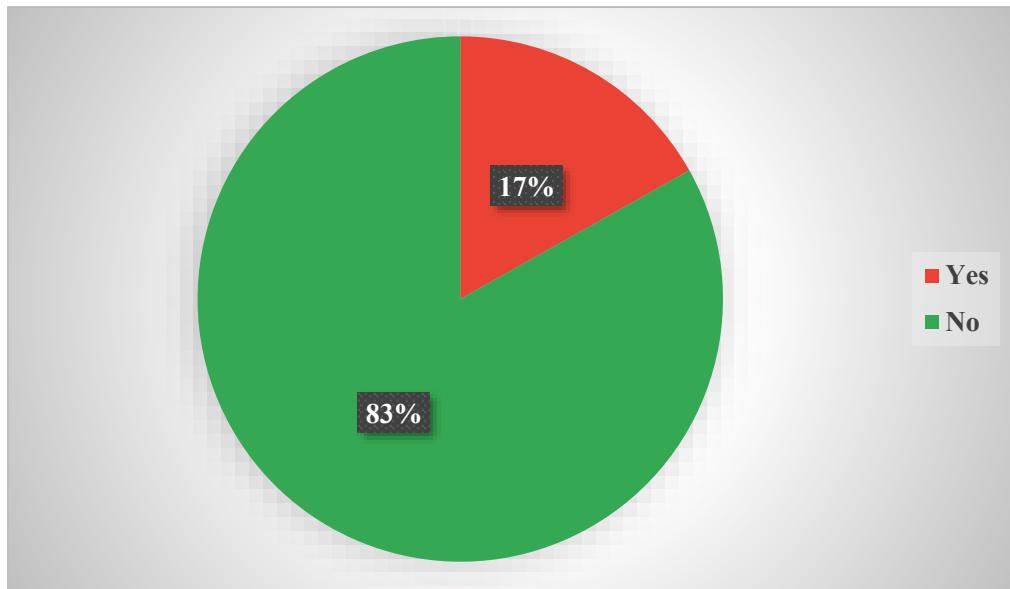
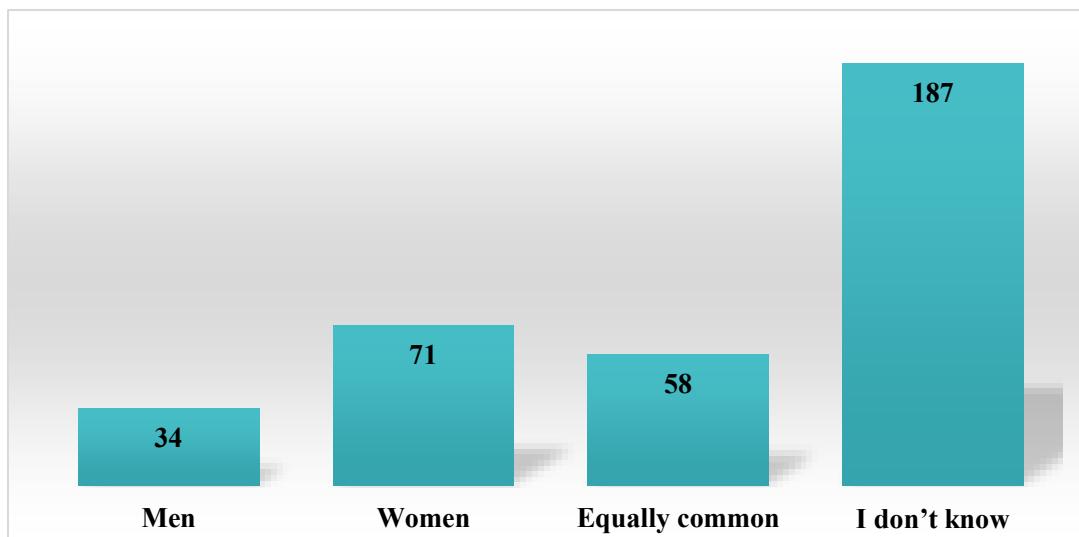



Figure 3: Nationality distribution among study participants

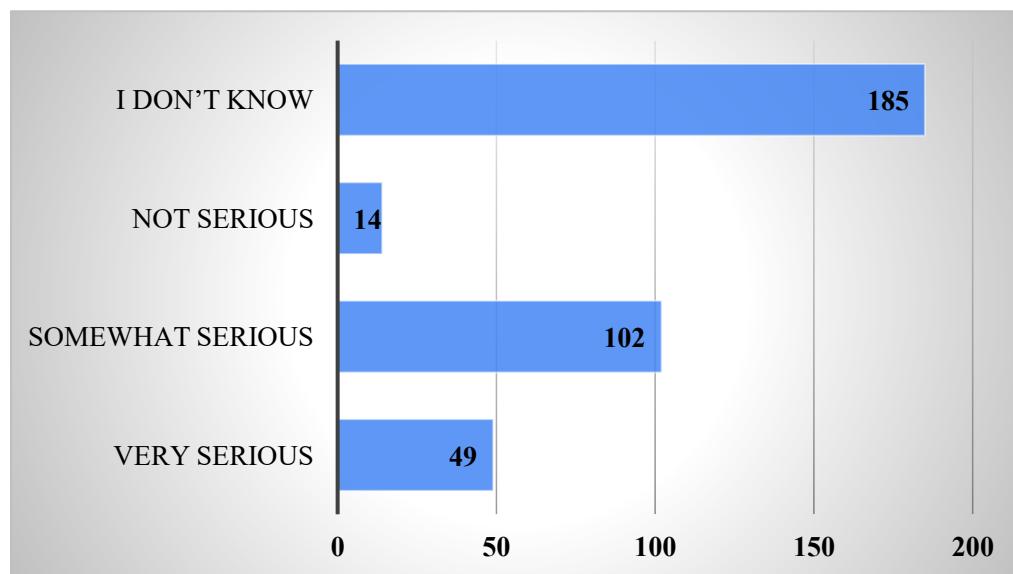
Educational Qualification among study participants, with most of them were Bachelors (n=242, 69.1%), followed by High School (n=76, 21.7%), then Master's (n=32, 9.1%). Occupation among study participants, with most were employed (non-healthcare) (n=173, 49.4%), followed by Unemployed (n=56, 16%), then Employed (Healthcare) (n=49, 14%), and Student (n=40, 11.4%).


Participants were asked Do you suffer from any chronic back or joint pain? Most of them answered No (n=223, 63.7%) and Yes (n=127, 36.3%).

The participants were asked heard of Ankylosing Spondylitis; most of them answered No (n=291, 83.1%), and Yes (n=59, 16.9%). The diagnosis of cancer is presented in Figure 4.

Figure 4: Hears of AS distribution among study participants

Participants were asked where Ankylosing Spondylitis was more common. Most of them answered I don't know (n=187, 53.4%), followed by women (n=71, 20.3%), then equally common (n=58, 16.6%), and at least Men (n=34, 9.7%). Figure 5 shows the distribution of the Most Common AS among study participants.


Figure 5: Most Common of AS distribution among study participants

Participants were asked about the Knowledge Assessment for Ankylosing Spondylitis. Their responses and results are presented in Table 1.

Statement	Yes	No	Not Sure
AS is caused by bacterial or viral infection	21 (6%)	55 (15.7%)	274 (88.3%)
Is there a genetic component linked to AS (e.g., HLA-B27 gene)	54 (15.4%)	28 (8%)	268 (76.6%)
Do you think AS can be diagnosed using imaging tests like X-ray or MRI	155 (44.3%)	12 (3.4%)	183 (52.3%)

Participants were asked Do you personally know anyone diagnosed with AS. The most frequent answer No (n=315, 90%), followed by Yes - relative or colleague (n=22, 6.3%), then Me (n=13, 3.7%).

Participants were asked in their opinion, how serious Ankylosing Spondylitis is as a health condition; Most of them were I don't know (n=185, 52.9%), followed by Somewhat Serious (n=102, 29.1%), then Very Serious (n=49, 14%), and at least Not Serious (n=14, 4%). Figure 6 shows participants' Perceived Seriousness of AS.

Figure 6: Perceived Seriousness of AS Distribution Among Study Participants

DISCUSSION

CONCLUSION

The results showed statistically significant associations between knowledge about Ankylosing Spondylitis and each of age, nationality, educational qualification, occupation, and prior awareness of the disease, while no significant association was found with gender.

REFERENCES

1. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. *Lancet* 2017;389:2338-48.
2. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. *Best Pract Res Clin Rheumatol* 2017;31:3-18.
2. Young A, Koduri G. Extra-articular manifestations and complications of rheumatoid arthritis. *Best Pract Res Clin Rheumatol* 2007;21:907-27.
4. Smolen JS. Rheumatoid arthritis Primer-behind the scenes. *Nat Rev Dis Primers* 2020;6:32.
3. Singh JA, Saag KG, Bridges SL Jr., Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. *Arthritis Rheumatol* 2016;68:1-26.
4. Bullock J, Rizvi SA, Saleh AM, Ahmed SS, Do DP, Ansari RA, et al. Rheumatoid arthritis: A brief overview of the treatment. *Med Princ Pract* 2018;27:501-7.
5. Roth G. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) results. Seattle, United States: Institute for Health metrics and evaluation (IHME), 2018. *Lancet* 2018;392:1736-88.
6. Widdifield J, Paterson JM, Huang A, Bernatsky S. Causes of death in rheumatoid arthritis: How do they compare to the general population? *Arthritis Care Res (Hoboken)* 2018;70:1748-55.
7. Mendoza-Gutierrez CF, Montiel-Ojeda D, Vargas-Chanes D, Cisneros-González N, Fernández-Gárate JE, Godina-Ortiz B, et al. Health and economic impact associated with rheumatoid arthritis discharges: A cost analysis of a two-year cohort in Mexico. *BMC Health Serv Res* 2023;23:1320.
1. Roßmann J, Gummer T, Kaczmirek L. Working with user agent strings in Stata: The PARSEUAS command. *Journal of Statistical Software*. 2020;92:1-16.
8. Pustejovsky JE, Rodgers MA. Testing for funnel plot asymmetry of standardized mean differences. *Res Synth Methods*. 2019;10:57-71. doi: 10.1002/jrsm.1332.
9. Afolabi BB, Moses OE, Oduyebo OO. Bacterial vaginosis and pregnancy outcome in Lagos, Nigeria. *Open Forum Infect Dis.* 2016;3:ofw030. doi: 10.1093/ofid/ofw030. doi:10.1093/ofid/ofw030.
10. Dingens AS, Fairfortune TS, Reed S, Mitchell C. Bacterial vaginosis and adverse outcomes among full-term infants: A cohort study. *BMC Pregnancy Childbirth*. 2016;16:278. doi: 10.1186/s12884-016-1073-y.
11. Nelson DB, Hanlon A, Nachamkin I, Haggerty C, Mastrogiovanni DS, Liu CZ, et al. Early pregnancy changes in bacterial vaginosis-associated bacteria and preterm delivery. *Paediatr Perinat Epidemiol.* 2014;28:88-96. doi: 10.1111/ppe.12106.

12. Hsieh PH, Wu O, Geue C, McIntosh E, McInnesIB, Siebert S. Economic burden of rheumatoid arthritis: A systematic review of literature in biologic era. *Ann Rheum Dis* 2020;79:771-7.
13. Mousavi SE, Nejadghaderi SA, Khabbazi A, Alizadeh M, Sullman MJ, Kaufman JS, et al. The burden of rheumatoid arthritis in the Middle East and North Africa region, 1990-2019. *Sci Rep* 2022;12:19297.
14. Alghamdi A, Alsaif K, Alsahl M, Omair M, Almohammed O, Almalaq H, et al. PMS14 economic burden of rheumatoid arthritis in Saudi Arabia: A single-center cost of illness study. *Value Health* 2020;23:S594.
15. Al-Mehmadi BA, Alelaiwi MM, Alnumayr HS, Alghamdi BS, Alomari BA, Alzahrani HS. Knowledge of common symptoms of rheumatic diseases and causes of delayed diagnosis in Saudi Arabia. *Patient Prefer Adherence* 2024;18:635-47.
16. Hazzazi A, Ageeli H, Muyidi AA, Abulgasim M, Yateemi A, Alhakami N. Population awareness about rheumatoid arthritis in Jazan region, Saudi Arabia. *Int J Med Dev Ctries* 2020;4:668-75.
17. Rafia R, Ara R, Packham J, Haywood KL, Healey E. Healthcare costs and productivity losses directly attributable to ankylosing spondylitis. *Clin Exp Rheumatol* 2012;30:246-53.
18. Mccain J. The disease burden of the most common autoimmune diseases. *Manag Care* 2016;25:28-32.
19. Sarobe M, Arrondo A, Ibarroa O, Mar J. Health-related quality of life in patients with rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis treated with certolizumab pegol. *Farm Hosp* 2021;46:27-30.
20. Salman S, Salnuaimi A, Lateef NA, Kadhum R. Assessment of knowledge and attitude in a sample of patients with rheumatoid arthritis and its association with disease activity and severity: A cross-sectional study. *Open J Rheumatol Autoimmune Dis* 2014;4:226.
21. Alrashdi MN, Alrasheedi SM, Alkhdaire A, Almutairi KO, Almutairi MA, Alharbi AF, et al. Impact of mass media on the general population's knowledge and attitudes toward rheumatoid arthritis in Qassim, Saudi Arabia. *Cureus* 2022;14:e31079.
22. Wardt EM, Taal E, Rasker JJ. The general public's knowledge and perceptions about rheumatic diseases. *Ann Rheum Dis* 2000;59:32-8.
23. Alenzi F, Al-Sheikh H, Alaraj K, Saeed T, Alfedeah R, Al-Anazi R, et al. A cross-sectional assessment of the knowledge about rheumatoid arthritis among university students in Saudi Arabia. *Ann Rheumatol Autoimmun* 2021;1:13-6.
24. Alenzi F, Al-Sheikh H, Alnasser M, Al Adwani M, Aldhuwayhi R, Algenaim E, et al. The level of knowledge about rheumatic diseases in Saudi Arabia: A community-based survey. *Int J Acad Med* 2022;8:145-50.
25. Tsuboi H, Kaneko Y, Ikeda K, Aranishi T, Cai Z, Ishizuka T. Current status of shared decision making for rheumatoid arthritis treatment in Japan: A web-based survey on physicians and patients. *Curr Med Res Opin* 2022;38:853-61.
26. Menassa J, Bou Nassar D, El Naboulsi F, El Naggar E, Sunna N, Ghoubar M. Public awareness of rheumatoid arthritis and ankylosing spondylitis in Lebanon. *Open Rheumatol J* 2022;16:1-10.

ANNEX 1: DATA COLLECTION TOOL.

1. Age:

a. 18–29 b. 30–39 c. 40–49 d. 50–59 e. 60–69 f. 70 and more

2. Gender:

a. Male b. Female

3. Nationality:

a. Saudi b. non-Saudi (Resident)

4. Educational Qualification:

a. High School
b. Bachelor's
c. Master's

5. Occupation:

a. Student
b. Employed (Non-Healthcare)
c. Employed (Healthcare)
d. Unemployed
e. Retired

6. Do you suffer from any chronic back or joint pain?

a. Yes b. No

7. Have you ever heard of Ankylosing Spondylitis (AS)?

a. Yes b. No

8. Ankylosing Spondylitis is a type of:

a. Bone infection
b. Autoimmune inflammatory disease
c. Digestive disorder
d. Heart disease
e. I don't know

9. What part of the body does AS primarily affect?

a. Spine and lower back
b. Lungs
c. Knees and elbows
d. Liver
e. I don't know

10. AS is more common in:

a. Men
b. Women
c. Equally common
d. I don't know

11. AS typically begins at what age group?

a. Childhood
b. Teenage to early adulthood (15–30)
c. After 50
d. I don't know

12. What are the common symptoms of AS? (Select all that apply)

- a. Persistent lower back pain
- b. Morning stiffness
- c. Pain improves with exercise
- d. Fatigue
- e. Swelling in the feet
- f. I don't know

13. Can Ankylosing Spondylitis lead to permanent spine deformity if left untreated?

- a. Yes
- b. No Not sure

14. AS is caused by bacterial or viral infection.

- a. True
- b. False
- c. Not sure

15. Is there a genetic component linked to AS (e.g., HLA-B27 gene)?

- a. Yes
- b. No
- c. Not sure

16. Do you think AS can be diagnosed using imaging tests like X-ray or MRI?

- a. Yes
- b. No
- c. Not sure

17. Which specialists typically treat AS?

- a. Orthopedic Surgeon
- b. Neurologist
- c. Rheumatologist
- d. Cardiologist
- e. I don't know

18. I believe AS is a common condition in Saudi Arabia.

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

19. More awareness campaigns should be conducted on AS.

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

20. Do you personally know anyone diagnosed with AS?

- a. Me
- b. Yes - relative or colleague
- c. No

21. In your opinion, how serious is Ankylosing Spondylitis as a health condition?

- a. Very Serious
- b. Somewhat Serious
- c. Not Serious
- d. I don't know

APPENDIX 2: Participants' responses to scale items

Age	Frequency	Percent
18-29	98	28.0
30-39	106	30.3
40-49	74	21.1
50-59	53	15.1
60-69	17	4.9
70 and more	2	0.6

Total	350	100.0
-------	-----	-------

Gender	Frequency	Percent
Male	189	54.0
Female	161	46.0
Total	350	100.0

Nationality	Frequency	Percent
Saudi	325	92.9
non-Saudi	25	7.1
Total	350	100.0

Educational Qualification	Frequency	Percent
High School	76	21.7
Bachelor's	242	69.1
Mater's	32	9.1
Total	350	100.0

Occupation	Frequency	Percent
Student	40	11.4
Employed (Non-Healthcare)	173	49.4
Employed (Healthcare)	49	14.0
Unemployed	56	16.0
Retired	32	9.1
Total	350	100.0

suffer.any.chronic.back	Frequency	Percent
Yes	127	36.3
No	223	63.7
Total	350	100.0

heard.AS	Frequency	Percent
Yes	59	16.9
No	291	83.1
Total	350	100.0

A.S.type.of	Frequency	Percent
Bone infection	45	12.9
Autoimmune inflammatory disease	74	21.1
Digestive disorder	2	0.6
Heart disease	2	0.6
I don't know	227	64.9
Total	350	100.0

part.body.AS	Frequency	Percent
Spine and lower back	193	55.1
Lungs	7	2.0
Knees and elbows	9	2.6
Liver	1	0.3
I don't know	140	40.0
Total	350	100.0

AS.more.common	Frequenc y	Percent
Men	34	9.7
Women	71	20.3
Equally common	58	16.6
I don't know	187	53.4
Total	350	100.0

AS.begins.age	Frequenc y	Percent
Childhood	7	2.0
Teenage to early adulthood (15–30)	54	15.4
After 50	101	28.9
I don't know	188	53.7
Total	350	100.0

Can.AS.lead.permanent.spine.deformity.left.untreated	Frequenc y	Percent
Yes	100	28.6
No not sure	250	71.4
Total	350	100.0

AS.caused.bacterial	Frequenc y	Percent

True	21	6.0
False	55	15.7
Not sure	274	78.3
Total	350	100.0

Genetic component	Frequency	Percent
Yes	54	15.4
No	28	8.0
Not sure	268	76.6
Total	350	100.0

Imaging tests	Frequency	Percent
Yes	155	44.3
No	12	3.4
Not sure	183	52.3
Total	350	100.0

specialists.treat.AS	Frequency	Percent
Orthopedic Surgeon	161	46.0
Neurologist	28	8.0
Cardiologist	1	0.3
I don't know	160	45.7
Total	350	100.0

Believe AS condition	Frequency	Percent

Strongly Agree	81	23.1
Neutral	189	54.0
Disagree	80	22.9
Total	350	100.0

awareness.campaigns. AS	Frequenc y	Percent
Strongly Agree	279	79.7
Neutral	49	14.0
Disagree	22	6.3
Total	350	100.0

Know anyone diagnosed	Frequenc y	Percent
Me	13	3.7
Yes - relative or colleague	22	6.3
No	315	90.0
Total	350	100.0

Serious AS health condition	Frequenc y	Percen t
Very Serious	49	14.0
Somewhat Serious	102	29.1
Not Serious	14	4.0
I don't know	185	52.9
Total	350	100.0

What are the common symptoms of AS? (Select all that apply)	Frequency	Percent
Persistent lower back pain	172	27.5%
Morning stiffness	107	17.1%
Pain improves with exercise	40	6.4%
Fatigue	71	11.4%
Swelling in the feet	45	7.2%
I don't know	190	30.4%

Chi-square test:

Test Statistics

	Age	Gender	Nationality	Educational Qualification	Occupation	heard.AS
Chi-Square	154.309 ^a	2.240 ^b	257.143 ^b	210.263 ^c	194.143 ^d	153.783 ^b
df	5	1	1	2	4	1
Asymp.	.000	.134	.000	.000	.000	.000
Sig.						

a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 58.3.

b. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 175.0.

c. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 116.7.

d. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 70.0.

(Age, Educational Qualification, Occupation) > 0.05

(Gender) < 0.05

ANOVA:

		Sum of Squares	df	Mean Square	F	Sig.
Age	Between Groups	.001	1	.001	.001	.978
	Within Groups	512.196	348	1.472		

	Total	512.197	349			
Educational Qualification	Between Groups	.398	1	.398	1.356	.245
	Within Groups	102.071	348	.293		
	Total	102.469	349			
Occupation	Between Groups	3.671	1	3.671	2.761	.098
	Within Groups	462.789	348	1.330		
	Total	466.460	349			