

Common Complications of Endodontic Treatment and Successful Management Approaches: A Systematic Review

Rakan Saud Aloqaili¹, Aljawharah Abdullah Alrouqi², Hatim Helal Alharthi³, Sadeen Hassen Alghamdi⁴, Anass Khalid Alsarah⁵, Ablah Nawaf Aljazi⁶, Abdulaziz Mohammed Alqurashi⁷ and Abeer Abdulrahman Alnafea⁸

¹ Consultant in Pediatric Dentistry, Ministry of Health
rakan.aloqaili@gmail.com

² BDS, General Dentist, KSA aljouhraabdullah1994@gmail.com

³ Corresponding Author, BDS, General Dentist, KSA hhharthy1417@gmail.com

⁴ BDS, General Dentist, KSA
Sadeenalgh@gmail.com

⁵ BDS, General Dentist, KSA anass20142014@gmail.com

⁶ BDS, General Dentist, KAS ablah.nawaf@hotmail.com

⁷ BDS, General Dentist, KSA
Aziz.qurashi.dent@gmail.com

⁸ BDS, General Dentist, KSA
Dr.abeeralnafea@gmail.com

Abstract

Background: Endodontic treatment is a cornerstone of modern dental practice with high reported success rates; however, procedural and postoperative complications remain clinically relevant.

Objective: To systematically review common complications of endodontic treatment and evaluate successful management approaches.

Methods: A systematic search of PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar (2000–2025) was conducted following PRISMA 2020.

Results: Instrument separation, canal transportation, ledge formation, perforations, postoperative pain, and flare-ups were the most frequent complications. Magnification, CBCT imaging, ultrasonic techniques, and bioceramic materials improved management outcomes.

Conclusion: Evidence-based management significantly enhances prognosis and treatment success.

Introduction

Endodontic therapy, commonly referred to as root canal treatment, is an essential component of contemporary dental practice.

Advances in imaging, nickel–titanium instrumentation, irrigation protocols, obturation materials, and magnification technologies have significantly improved success rates.

Despite these advancements, endodontic procedures remain technique-sensitive and prone to complications.

Understanding the etiology, risk factors, and management of endodontic complications is essential for dental practitioners.

Methods

This systematic review was conducted according to PRISMA 2020 guidelines. Databases searched included PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar.

Results

Table 1. Common endodontic complications

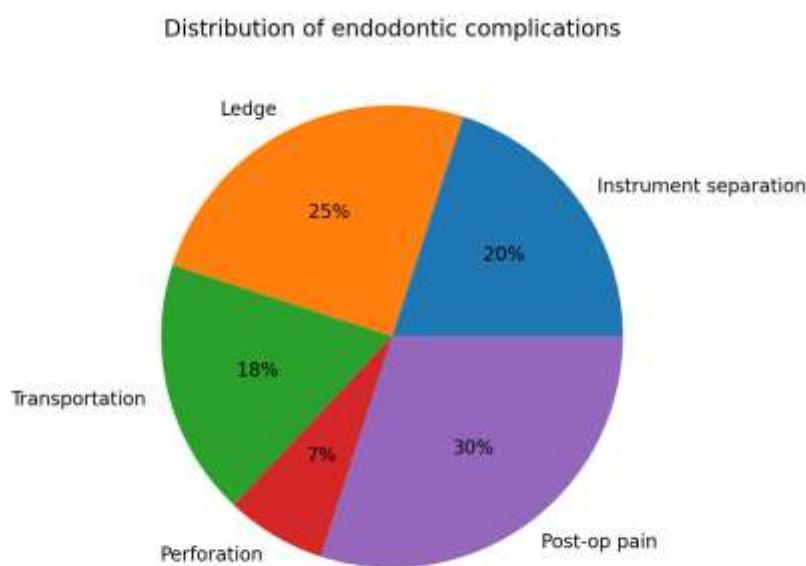

Complication	Stage	Prevalence	Clinical impact
Instrument separation	Instrumentation	1–5%	Reduced disinfection
Ledge formation	Instrumentation	3–10%	Loss of working length
Canal transportation	Instrumentation	2–8%	Poor apical seal
Root perforation	Access	0.5–3%	Risk of failure
Postoperative pain	Post-treatment	10–30%	Patient discomfort

Table 2. Successful management strategies

Complication	Management	Technique/material	Outcome
Instrument separation	Ultrasonic retrieval	Microscope + ultrasonics	High success
Perforation	Immediate sealing	MTA/bioceramic	Improved prognosis
Transportation	Canal reshaping	Flexible NiTi files	Moderate success
Postoperative pain	Medication	NSAIDs	Symptom relief

Table 3. Risk factors associated with endodontic complications

Risk factor	Category	Associated complications	Evidence strength
Complex anatomy	Anatomical	Ledge, transportation	Strong
Operator inexperience	Operator	Instrument separation	Strong
Rigid instruments	Instrument	Transportation	Moderate
Inadequate irrigation	Biological	Postoperative pain	Moderate

Figure 1. Distribution of endodontic complications

Discussion

Endodontic complications remain prevalent despite advances in materials and techniques. Operator experience and anatomical complexity are major determinants.

Conclusion

Evidence-based management strategies and continuous professional training are essential.

References

1. Siqueira JF Jr, Rôcas IN. Clinical implications and microbiology of endodontic treatment failure. *Int Endod J.* 2008;41(8):697–712.

2. Peters OA. Current challenges in root canal preparation. *J Endod.* 2004;30(8):559–567.
3. Torabinejad M, Walton RE. *Endodontics: Principles and Practice*. 5th ed. Elsevier; 2015.
4. Ng YL, et al. Outcome of primary root canal treatment: systematic review. *Int Endod J.* 2007;40(12):921–939.
5. Iqbal MK. Management of fractured instruments. *J Endod.* 2004;30(9):636–643.
6. Parashos P, Messer H. Rotary NiTi instrument fracture. *Int Endod J.* 2006;39(11):828–837.
7. Tsesis I, et al. Endodontic mishaps. *Dent Traumatol.* 2008;24(5):521–525.
8. Pitt Ford TR, et al. MTA in perforation repair. *J Endod.* 1995;21(4):198–202.
9. Alhadainy HA. Root perforations. *Oral Surg Oral Med Oral Pathol.* 1994;78(3):368–374.
10. Plotino G, et al. Ultrasonics in endodontics. *J Endod.* 2007;33(2):81–95.
11. Schilder H. Cleaning and shaping. *Dent Clin North Am.* 1974;18(2):269–296.
12. Walton R, Fouad A. Endodontic flare-ups. *J Endod.* 1992;18(4):172–177.
13. Sathorn C, et al. Postoperative pain. *J Endod.* 2008;34(6):651–658.
14. Azim AA, et al. CBCT in endodontics. *J Endod.* 2014;40(7):980–988.
15. European Society of Endodontontology. Quality guidelines. *Int Endod J.* 2006;39(12):921–930.
16. Cohen S, Burns RC. *Pathways of the Pulp*. 11th ed. Mosby; 2016.
17. Ruddle CJ. Nonsurgical retreatment. *J Endod.* 2004;30(12):827–845.
18. Kim S, Kratchman S. Modern endodontic surgery. *J Endod.* 2006;32(7):601–623.
19. Cheung GS. Instrument fracture. *Int Endod J.* 2007;40(5):371–379.
20. Haapasalo M, et al. Irrigation in endodontics. *Br Dent J.* 2014;216(6):299–303.
21. Silva EJ, et al. Management of root perforations. *Clin Oral Investig.* 2017;21(3):843–858.
22. Estrela C, et al. Successful root canal treatment. *Braz Dent J.* 2014;25(1):3–11.
23. American Association of Endodontists. Clinical guidelines. 2020.
24. Vertucci FJ. Root canal anatomy. *Oral Surg Oral Med Oral Pathol.* 1984;58(5):589–599.
25. Hülsmann M, et al. Mechanical preparation of root canals. *Int Endod J.* 2005;38(5):293–316.
26. Ricucci D, Siqueira JF Jr. Tissue fate in lateral canals. *J Endod.* 2010;36(6):1073–1077.
27. Plotino G, et al. Cyclic fatigue of NiTi instruments. *J Endod.* 2009;35(11):1469–1476.
28. Ng YL, Gulabivala K. Prognostic factors. *Int Endod J.* 2011;44(7):583–609.
29. Chugal NM, et al. Root canal filling density. *J Endod.* 2007;33(7):791–796.
30. Seltzer S, Bender IB. *The Dental Pulp*. 3rd ed. Lippincott; 1984.