

The Impact Of Collaboration Between Nursing, Medical Laboratory Services, And Public Health In Controlling Epidemic Outbreaks

Ahmad Fahad Basamad¹, Mawahib Helal Sulaimani², Nada Nabeil Matooq Ashour³, Ghada Sultan Rajeh Alghamdi⁴, Hind Fayz Mohammed Alharthi⁵, Aisha Ali Khaild Sdieg⁶, Shahad Otman Ali Alharby⁷, Najwa Abkar Ameen Kubayni⁸, Layla Omar Salem Kubayni⁹.

^{1,2,3} Ministry of health- Makkah Health Cluster -Saudi Arabia

^{4,5} Ministry of health- Albaha Health Cluster-Saudi Arabia

^{6,7,8,9} Ministry of health- Jazan Health Cluster -Saudi Arabia

Abstract

The landscape of global health security is characterized by an escalating frequency and complexity of infectious disease threats, necessitating a paradigmatic shift from reactive crisis management to a proactive, integrated defense strategy. At the nexus of this strategy lies the critical collaboration between three essential pillars of the healthcare architecture: nursing, medical laboratory services (MLS), and public health agencies. Historically, these disciplines have operated within distinct professional silos, shaped by separate evolutionary trajectories and administrative frameworks. However, the emergence of high-consequence pathogens—ranging from the H1N1 influenza pandemic and the Ebola virus disease epidemic in West Africa to the global COVID-19 crisis—has underscored that the containment of an outbreak is fundamentally a multidisciplinary endeavor. This report provides a comprehensive analysis of the role of interdisciplinary collaboration in enhancing epidemic preparedness, detection, response, and containment, utilizing an analytical and narrative framework to synthesize evidence from recent public health emergencies.

Keywords: Interdisciplinary Collaboration, Epidemic Preparedness and Response, Healthcare Integration, Public Health Surveillance, Nursing Leadership in Outbreaks, Diagnostic and Laboratory Medicine, Health System Resilience

1. INTRODUCTION

The contemporary operational cleavage between public health and medical care is not a recent phenomenon but the result of a long-standing historical divergence that dates back to the early 19th century. Before the 1800s, public health efforts in many regions, particularly the United States, were primarily focused on addressing sanitary living conditions and environmental hygiene to mitigate the spread of disease. The advent of microbiology in the late 19th century brought public health into closer proximity with clinical medicine, yet this proximity frequently led to institutional conflict. Early attempts to establish unified national public health institutions were often met with resistance from private physician groups who perceived government-run clinics, medication dispensaries, and public health laboratories as direct competitors to their private enterprises [1].

By the early 1900s, this tension resulted in a structure where states and localities emerged as the primary governing units for public health promotion, while clinical medicine remained

rooted in private sector autonomy and individual patient care. The federal role in public health evolved into a supporting function, eventually codified by the Public Health Service Act of 1944. This legislation granted agencies like the Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA) the authority to regulate and harmonize responses across states, although the extent of these powers has remained a subject of legal and political debate, particularly during the recent COVID-19 pandemic [2].

This historical "operational cleavage" created a system where the medical infrastructure focused on individual clinical outcomes, while the public health infrastructure focused on population-level surveillance and environmental health. Nursing and medical laboratory services were positioned at the center of this divide. Laboratory medicine became the primary engine for microbiology and diagnostic confirmation, yet it was often functionally separated from the broader public health surveillance network. Simultaneously, the nursing workforce became the backbone of clinical delivery, yet nurses were historically excluded from the systemic leadership and policy-making roles necessary for high-level epidemic planning [3].

2. The Laboratory Pillar: Precision Diagnostics and Surveillance

Medical laboratory services function as the etiological cornerstone of any epidemic response. The laboratory provides the definitive diagnosis required to initiate clinical treatment, trigger public health interventions, and monitor the evolution of a pathogen. During an outbreak, the laboratory is responsible for identifying the causative agent, determining its transmission patterns, and conducting genomic surveillance to track mutations that might affect virulence or vaccine efficacy [4].

Diagnostic Accuracy and the Speed of Detection

The speed with which a laboratory can confirm a pathogen is a primary determinant of the success of containment efforts. Research conducted during the COVID-19 pandemic revealed that population screening using molecular biology techniques within five days of identifying a primary case could confine an outbreak within a 2.2-kilometer radius. This high degree of precision highlights the laboratory's role in "buying time" for the rest of the healthcare system to implement isolation and treatment protocols. Early identification by timely laboratory testing is particularly critical in circumscribed environments such as long-term care homes, where early detection (within two infectious resident-days) is associated with significantly lower secondary infection rates compared to late detection (3.3% versus 10.3%) [5].

Modern diagnostic techniques, including Polymerase Chain Reaction (PCR), next-generation sequencing, and rapid antigen tests, allow for the identification of novel pathogens and the tracking of pathogen evolution. These technologies are not only essential for individual patient management but also serve as the data sources for predictive modeling and forecasting, which inform decisions regarding public health measures such as school closures or travel restrictions [6].

Laboratory Biosafety and Infrastructure Challenges

Controlling an epidemic of a high-consequence pathogen requires advanced laboratory infrastructure, specifically Biosafety Level 3 (BSL-3) and BSL-4 facilities. These laboratories are designed to handle infectious microorganisms that require high-containment measures to protect both laboratory personnel and the public. The COVID-19 pandemic exposed critical limitations in global BSL-3 capacity, particularly in low- and middle-income countries. This lack of infrastructure often forces nations to operate in suboptimal environments, which underscores the urgent need for a unified regulatory framework and increased investment in biosafety standards [7].

Laboratory Requirement	Function in Epidemic Control	Impact on Preparedness
Early Etiological Diagnosis	Identification of the specific pathogen (e.g., SARS-CoV-2, MERS-CoV).	Prevents rapid escalation and informs clinical management.
Genomic Surveillance	Monitoring viral mutations and tracking transmission patterns.	Essential for vaccine development and monitoring breakthrough cases.
Wastewater Monitoring	Non-invasive community-level detection of pathogen shedding.	Provides "nowcasting" data for early warning before clinical surges.
BSL-3/4 Containment	Safe handling of high-consequence infectious agents.	Ensures researcher safety and prevents accidental environmental release.

Beyond traditional diagnostic testing, the laboratory's role has expanded into environmental surveillance. Wastewater surveillance, which involves testing sewage for evidence of pathogens, has re-emerged as a vital tool for the early detection of SARS-CoV-2 and other viruses. By identifying an increase in viral load in a community's wastewater before clinical cases appear, laboratory services provide public health authorities with a critical early warning that can trigger localized interventions [8].

3. The Nursing Pillar: Frontline Clinical and Community Leadership

Nurses represent the largest segment of the global healthcare workforce and serve as the primary interface between the health system and the patient. Their role in epidemic control is multifaceted, spanning direct clinical care, triage, public education, community engagement, and psychological support. The competence of the nursing workforce to implement medical emergency response measures, often termed "emergency response capability," is a significant predictor of the success of outbreak containment [9].

Triage, Screening, and Clinical Management

In the early stages of an outbreak, nurses are responsible for the rapid triage and screening of symptomatic individuals. This function is vital for preventing the nosocomial transmission of pathogens within healthcare facilities. During the MERS-CoV and COVID-19 outbreaks, nurse-led screening programs were instrumental in establishing cohorting protocols and ensuring that suspected cases were isolated before they could infect other patients or staff [10]. Nurses provide advanced clinical care in intensive care units (ICUs) and isolation wards, managing complex respiratory equipment and administering medical countermeasures. This role requires not only clinical expertise but also a high degree of professional resilience. The physical and emotional strain of managing high-mortality outbreaks is substantial; during the COVID-19 pandemic, nurses faced heavy workloads, resource shortages, and the constant risk of infection [11].

Community Engagement and Public Education

Beyond the hospital setting, nurses play a critical role in public health surveillance and community outreach. Public health and school nurses are often the first to identify clusters of illness and notify the CDC, as seen during the 2009 H1N1 influenza pandemic. In the community, nurses manage shelters, organize blood drives, and provide outreach to

underserved populations, addressing the social determinants of health that contribute to disease transmission [3].

Nurses are also key providers of health education, counseling community members to mitigate fear and anxiety. By building trust with the community, nurses facilitate the adoption of preventive behaviors and improve the uptake of vaccination programs. However, despite their pivotal role, research indicates that nursing interns and early-career professionals often experience deficiencies in specialized emergency knowledge and psychological intervention capabilities. A study of nursing interns in the post-pandemic era revealed that while Generation Z practitioners have high digital competence, they require more integrated training in emergency operations and professional identity cultivation to fulfill their roles effectively in future crises [3].

Nursing Competency	Specific Action in Epidemic Response	Role in Collaboration
Rapid Triage	Assessing and isolating symptomatic individuals at points of entry.	Interfaces with the laboratory for prioritized diagnostic testing.
Infection Prevention	Ensuring proper use of Personal Protective Equipment (PPE) and hygiene protocols.	Coordinates with public health to implement facility-wide standards.
Risk Communication	Educating patients and families on transmission risks and vaccination.	Translates public health data into actionable patient advice.
Policy Advocacy	Participating in the development of operational response protocols.	Ensures clinical realities are reflected in public health planning.

4. The Public Health Pillar: Systemic Oversight and Policy Integration

Public health agencies provide the strategic framework for epidemic control, serving as the central coordinating body for diagnostic, clinical, and community interventions. Their mandate involves the continuous, systematic collection and analysis of health data, the management of resource allocation, and the implementation of policy decisions aimed at protecting the population [8].

The International Health Regulations and Core Capacities

The global architecture for epidemic response is governed by the International Health Regulations (IHR 2005), a legally binding agreement among 196 countries. The IHR mandates that states develop and maintain specific core capacities to detect, assess, and respond to public health risks of international concern. These core capacities include human resource development, surveillance, laboratory capacity, and effective multisectoral collaboration [12]. To evaluate progress toward these goals, concrete metrics have been developed for laboratory and response capacities. For laboratory services, countries are assessed on their ability to perform 10 core diagnostic tests for indicator pathogens—including PCR for influenza, serology for HIV, and microscopy for tuberculosis—with defined turnaround times. For response capacity, the IHR emphasizes the importance of multidisciplinary Rapid Response Teams (RRTs) that can deploy within 24 hours of a reported event [13].

Local Health Departments and Strategic Collaboration

At the local level, health departments (LHDs) act as the operational center for outbreak prevention and response. They coordinate with healthcare facilities, government agencies, and

community organizations to ensure a unified effort. LHDs are responsible for data management, public communication, and ensuring an equitable response that reaches vulnerable and underserved populations [14].

IHR Core Capacity	Specific Goal and Implementation Target	Metric of Success
Human Resources	A national workforce plan and 1 field epidemiologist per 200,000 people.	Documentation of an active and updated workforce plan.
Laboratory	Ability to perform 10 core diagnostic tests from any part of the country.	Passing external quality assurance for indicator pathogens.
Response	At least 1 functioning Rapid Response Team per major administrative unit.	Conduct of >2 field outbreak investigations per year.
Surveillance	Systems capable of detecting selected potential public health emergencies.	Ability to detect >3 of 5 specific disease syndromes.

5. Mechanisms of Interdisciplinary Collaboration

Interprofessional collaboration is defined as an active and ongoing partnership between professionals from diverse backgrounds working together to provide services for the benefit of healthcare users [15]. This collaboration is not merely a logistical convenience but a fundamental requirement for managing the complex interplay of biological, socioeconomic, and environmental factors that drive pandemics [16].

Bridging Gaps, Negotiating Overlaps, and Creating Spaces

A conceptual framework for effective collaboration involves three key domains: bridging gaps, negotiating overlaps, and creating spaces [15].

1. **Bridging Gaps:** This involves aligning professional perspectives and closing social, physical, or task-related divides. During the COVID-19 pandemic, large skilled nursing facility (SNF) chains and public health officials bridging gaps through "meaningful conversations" and sharing "communal stories" helped build trust and a common team culture.

2. **Negotiating Overlaps:** In an epidemic, roles often overlap—for instance, nurses and laboratory technicians may both be involved in specimen collection. Negotiating these overlaps involves clarifying roles to prevent professionals from "stepping on each other's toes" and ensuring that protocols for testing and patient cohorting are standardized across organizations.

3. **Creating Strategic Spaces:** Effective collaboration requires intentional components such as routine meetings, brief daily "huddles" on hospital units, and virtual "rounds" to facilitate engagement.

The Impact of Virtual Multidisciplinary Teams (MDTs)

The COVID-19 pandemic accelerated the adoption of virtual MDTs and telemedicine, which allowed specialists to collaborate remotely despite physical distancing measures. These virtual consultations have been shown to improve patient satisfaction by reducing travel burdens and enhancing diagnostic accuracy through the incorporation of diverse medical perspectives. However, challenges remain regarding digital access disparities and maintaining effective communication in a virtual environment [17].

6. Case Studies in Collaborative Outbreak Response

The 2009 H1N1 Pandemic in New York City

The response to the 2009 H1N1 pandemic in New York City (NYC) provides a critical case study in interdisciplinary coordination. The NYC Department of Health and Mental Hygiene (DOHMH) utilized the Incident Command System (ICS) to manage the response, mobilizing over 200 staff members beyond their normal duties [18].

- **Laboratory and Surveillance Synergy:** The DOHMH established active ICU surveillance by contacting all 57 NYC hospitals daily to identify severe respiratory illness. This was complemented by sentinel laboratory surveillance to detect community circulation of the virus.
- **Nursing and Public Information:** A team of public health nurses was created to liaison with healthcare providers and develop localized information for the public.
- **Outcome:** The integration of real-time laboratory data with nursing-led vaccination programs and treatment centers allowed NYC to prioritize antiviral distribution and free vaccination to high-risk residents.

The Ebola Epidemic in West Africa (2014–2016)

The Ebola outbreak underscored how actions in healthcare settings can either contain or amplify an infectious threat. A critical collaborative initiative was the Partnership for Research on Ebola Virus in Liberia (PREVAIL), a bilateral agreement that focused on the safety and efficacy of candidate vaccines and therapies [19].

One of the primary challenges identified was the lack of data sharing during the early stages of the response. Breakdowns in communication between laboratory researchers and public health officials were cited as impediments to the research response. Furthermore, the outbreak revealed the necessity of integrating "ethnomedicine" with modern healthcare. In many West African communities, mistrust of government health services and a preference for traditional healers hindered containment. Effective response required engaging community leaders and nursing teams who could build trust and implement infection control protocols in a culturally sensitive manner.

The MERS-CoV Nurse-Led Screening Program

The emergence of Middle East Respiratory Syndrome (MERS) led to multiple healthcare-associated outbreaks, particularly in South Korea and Saudi Arabia. In response, a nurse-led program was developed at Johns Hopkins Aramco Healthcare to streamline the screening and triage of suspected MERS cases [10].

The program included a formal educational initiative where 450 nurses attended a "Nasopharyngeal Skills Day" to master the collection of specimens and the proper use of PPE. This nurse-led approach minimized the risk of cross-infection and expedited patients toward definitive treatment by ensuring that the laboratory received high-quality specimens for testing. This synergy between nursing and the laboratory proved essential for staff safety, as healthcare workers are at high risk for MERS infection, with mortality rates among infected healthcare workers being notably lower (5.78%) than the general population due to their younger average age [21].

7. Barriers to Effective Interdisciplinary Integration

Despite the clear benefits of collaboration, significant barriers persist that hinder the seamless integration of nursing, laboratory, and public health services.

Institutional Silos and Hierarchies

Professional boundaries and power dynamics often create institutional silos. Research indicates that laboratory and health inspection professionals frequently face greater hierarchical challenges than nursing teams, leading to "silent participation" in multidisciplinary discussions. Role ambiguity and a lack of clear definitions regarding who holds authority

during a crisis can cause communication interruptions and prevent the full utilization of team members' skills [21].

Data Governance and Privacy Risks

The integration of novel data sources—such as social media trends, search engine queries, and the Internet of Things (IoT)—offers the potential to strengthen public health surveillance. However, the use of these "big data" streams introduces significant challenges regarding data governance, security, and privacy. Improving the ability to transfer critical health intelligence from medical institutions to public health departments is a primary next step toward advancing the utility of innovation in surveillance [22].

Market and R&D Failures

Efficient epidemic response requires a coordinated public health-focused, end-to-end research and development (R&D) ecosystem for vaccines and diagnostics. Currently, the global R&D ecosystem is often supply-driven and fragmented, relying primarily on the private sector to deliver health products. The lack of commercial attractiveness for infectious diseases, which often require short-term therapies, compounds the "business case" problem for vaccines and therapeutics. Without mechanisms to channel resources to priority health needs, the development of essential technologies often comes late or is ill-adapted to the health systems that need them most [23].

8. Technological Innovation and the Future of Epidemic Control

The future of epidemic preparedness is increasingly tied to the adoption of advanced technologies that can enhance interdisciplinary action.

Artificial Intelligence and Predictive Modeling

Artificial Intelligence (AI) and machine learning (ML) are revolutionizing the ability to track and predict outbreaks. Models such as BlueDot and HealthMap have improved outbreak pattern detection by linking diverse data streams—including electronic health records, mobile-health datasets, and social media—with complex analytical methods. AI can predict where outbreaks are likely to occur and where resources should be shipped, which is particularly useful for managing endemic threats like malaria and antimicrobial resistance [24].

Technology	Collaborative Application	Impact on Containment
Machine Learning	Analyzing vast amounts of medical data to identify potential signals of an outbreak.	Enables early warning and faster resource allocation.
Telemedicine	Facilitating virtual multidisciplinary team meetings across geographic boundaries.	Enhances diagnostic accuracy in remote and underserved areas.
Wastewater Surveillance	Laboratory testing of community sewage for evidence of pathogens.	Detects community-level surges before individual cases are reported.
AI in Diagnostics	Using deep learning to analyze imaging data and laboratory results for earlier detection.	Improves patient outcomes through personalized treatment strategies.

The Role of Digital Competence in Nursing

As healthcare becomes more reliant on precision medicine and data-driven practices, the digital competence of the nursing workforce becomes paramount. Digital competence enables

nursing interns and practitioners to integrate advanced technologies into clinical practice, thereby enhancing work efficiency and care service quality during public health emergencies. Fostering a professional identity that values technological integration can strengthen accountability and **学习** motivation, ultimately bolstering the resilience of the health system [25].

9. CONCLUSIONS

The synthesis of evidence from recent epidemic outbreaks confirms that the collaboration between nursing, medical laboratory services, and public health is the fundamental determinant of success in outbreak containment. Each discipline brings a unique and indispensable set of skills: the laboratory provides diagnostic precision and surveillance data; nursing provides frontline clinical care, community trust, and triage; and public health provides the governance framework and strategic oversight.

To enhance this collaboration for future "Disease X" threats, several strategic recommendations emerge. First, healthcare organizations must move beyond professional silos by implementing interprofessional collaborative education (IPE) and leadership training that addresses institutional hierarchies. Second, governments and international agencies must invest in "integrated surveillance hubs" that allow for the seamless transfer of data between laboratories, hospitals, and public health departments while maintaining rigorous privacy standards. Third, the global R&D ecosystem must be restructured to prioritize public health needs over commercial attractiveness, ensuring that vaccines and diagnostics are available as quickly as possible—following the model of the "100-Days Mission."

Finally, the resilience of the healthcare system depends on the human factor. Prioritizing the training, psychological support, and professional identity of frontline workers—particularly the nursing workforce—is essential for sustaining the health system through the prolonged stress of a pandemic. By fostering a cohesive, intelligence-driven network that integrates laboratory precision with nursing care and public health governance, the global community can move toward a more secure and equitable health future.

References

1. Bourdeaux M, Sasdi A, Oza S, Kerry VB. Integrating the US public health and medical care systems to improve health crisis response. *Health Affairs* [Internet]. 2023 Mar 1;42(3):310–7. Available from: <https://doi.org/10.1377/hlthaff.2022.01255>
2. World Health Organization: WHO. International health regulations [Internet]. 2019. Available from: <https://www.who.int/health-topics/international-health-regulations>
3. Flaubert JL, Menestrel SL, Williams DR, Wakefield MK. Nurses in disaster preparedness and public Health emergency response [Internet]. The Future of Nursing 2020-2030 - NCBI Bookshelf. 2021. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK573904/>
4. Ferraro S, Braga F, Panteghini M. Laboratory medicine in the new healthcare environment. *Clinical Chemistry and Laboratory Medicine (CCLM)* [Internet]. 2015 Oct 14;54(4):523–33. Available from: <https://doi.org/10.1515/cclm-2015-0803>
5. Chua KB, Gubler DJ. Perspectives of public health laboratories in emerging infectious diseases. *Emerging Microbes & Infections* [Internet]. 2013 Jan 1;2(1):1–6. Available from: <https://doi.org/10.1038/emi.2013.34>

6. Lessons Learned from a Virus: Public Health Laboratories Respond to the H1N1 Pandemic. 2011.
7. Yeh KB, Tabynov K, Parekh FK, Mombo I, Parker K, Tabynov K, et al. Significance of High-Containment Biological Laboratories Performing Work During the COVID-19 Pandemic: Biosafety Level-3 and -4 Labs. *Frontiers in Bioengineering and Biotechnology* [Internet]. 2021 Aug 13;9:720315. Available from: <https://doi.org/10.3389/fbioe.2021.720315>
8. World Health Organization. 10 proposals to build a safer world together: Strengthening the Global Architecture for Health Emergency Preparedness, Response and Resilience [Internet]. Geneva: World Health Organization; 2022.
9. Wang W, Li H, Huang M. A literature review on the impact of disasters on healthcare systems, the role of nursing in disaster management, and strategies for cancer care delivery in disaster-affected populations. *Frontiers in Oncology* [Internet]. 2023 Jul 14;13:1178092. Available from: <https://doi.org/10.3389/fonc.2023.1178092>
10. Al-Tawfiq JA, Rothwell S, McGregor HA, Khouri ZA. A multi-faceted approach of a nursing led education in response to MERS-CoV infection. *Journal of Infection and Public Health* [Internet]. 2017 Aug 30;11(2):260–4. Available from: <https://doi.org/10.1016/j.jiph.2017.08.006>
11. UNICEF. How to improve primary healthcare to prepare for future pandemics [Internet]. UNICEF. Available from: <https://www.unicef.org/stories/how-to-improve-primary-healthcare-to-prepare-for-pandemics>
12. Organization WH. International Health Regulations (2005). 2016.
13. Ijaz K, Kasowski E, Arthur RR, Angulo FJ, Dowell SF. International Health Regulations—What gets measured gets done. *Emerging Infectious Diseases* [Internet]. 2012 May 23;18(7):1054–7. Available from: <https://doi.org/10.3201/eid1807.120487>
14. De Vries M, Kenis P, Kraaij-Dirkzwager M, Ruitenberg EJ, Raab J, Timen A. Collaborative emergency preparedness and response to cross-institutional outbreaks of multidrug-resistant organisms: a scenario-based approach in two regions of the Netherlands. *BMC Public Health* [Internet]. 2019 Jan 11;19(1):52. Available from: <https://doi.org/10.1186/s12889-018-6376-7>
15. Nazir A, Wenzler A, Reifsnyder J, Feifer R. Lessons in Collaboration from the Management of Pandemic in 2 Large Skilled Nursing Facility Chains. *Journal of the American Medical Directors Association* [Internet]. 2021 Oct 19;22(11):2225–7. Available from: <https://doi.org/10.1016/j.jamda.2021.09.004>
16. Khorram-Manesh A, Burkle FM Jr, Goniewicz K. Pandemics: past, present, and future: multitasking challenges in need of cross-disciplinary, transdisciplinary, and multidisciplinary collaborative solutions. *Osong Public Health and Research Perspectives* [Internet]. 2024 Jul 23;15(4):267–85. Available from: <https://doi.org/10.24171/j.phrp.2023.0372>
17. Rajasekaran RB, Whitwell D, Cosker TDA, Gibbons CLMH, Carr A. Will virtual multidisciplinary team meetings become the norm for musculoskeletal oncology care following the COVID-19 pandemic? - experience from a tertiary sarcoma centre. *BMC Musculoskeletal Disorders* [Internet]. 2021 Jan 5;22(1):18. Available from: <https://doi.org/10.1186/s12891-020-03925-8>
18. Balter S, Gupta LS, Lim S, Fu J, Perlman SE, Team F the NYC 2009 HFI. Pandemic (H1N1) 2009 Surveillance for Severe Illness and Response, New York, New York, USA,

April–July 2009. Emerging Infectious Diseases [Internet]. 2010 Aug 1;16(8):1259–64. Available from: <https://doi.org/10.3201/eid1608.091847>

19. Hageman JC, Hazim C, Wilson K, Malpiedi P, Gupta N, Bennett S, et al. Infection prevention and control for Ebola in health care settings — West Africa and United States. Vol. 65, MMWR. US Department of Health and Human Services/Centers for Disease Control and Prevention; 2016 Jul.

20. Xiao J, Fang M, Chen Q, He B. SARS, MERS and COVID-19 among healthcare workers: A narrative review. Journal of Infection and Public Health [Internet]. 2020 May 26;13(6):843–8. Available from: <https://doi.org/10.1016/j.jiph.2020.05.019>

21. Mohammed O, Rajhi MH, ALObaidi ES, ALAli Barno AM, ALHujuri AM, ALMwalad AA, et al. The role of interdisciplinary collaboration in improving Healthcare Outcomes: A theoretical perspective on nursing, laboratory, and health inspection integration. JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH. 2024 season-02;(S6):2152–3.

22. Jia P, Liu S, Yang S. Innovations in public health surveillance for emerging infections. Annual Review of Public Health [Internet]. 2023 Jan 10;44(1):55–74. Available from: <https://doi.org/10.1146/annurev-publhealth-051920-093141>

23. Olliaro P, Torreele E. Global challenges in preparedness and response to epidemic infectious diseases. Molecular Therapy [Internet]. 2022 Feb 23;30(5):1801–9. Available from: <https://doi.org/10.1016/j.ymthe.2022.02.022>

24. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Elsevier eBooks [Internet]. 2020. p. 415–38. Available from: <https://doi.org/10.1016/b978-0-12-817133-2.00018-5>

25. Isidori V, Diamanti F, Gios L, Malfatti G, Perini F, Nicolini A, et al. Digital Technologies and the Role of Health Care Professionals: Scoping Review exploring nurses' skills in the digital era and in the light of the COVID-19 pandemic. JMIR Nursing [Internet]. 2022 May 4;5(1):e37631. Available from: <https://doi.org/10.2196/37631>