
Cultura. International Journal of Philosophy of Culture and Axiology      21(12s)/2024  

 

 

227 

 

AI-Based Prototype For Training In Surgical Suturing 
Procedures 

 

Oscar Eduardo Gualdrón G 1, Juan Jose Ardila V2, Marisol Maestre D. 3 

 
1 GISM Research Group, Faculty of Engineering and Architecture, Electronic 
Engineering, University of Pamplona, Km 1 vía Bucaramanga, 543050, Pamplona, 
Colombia. 
2 Agroinnova Research Group, Ernesto Schiefelbein Foundation, Bogotá, Colombia. 
3 Gramy Research Group, Faculty of Economic and Business Sciences, Economics 
program, University of Pamplona, Km 1 vía Bucaramanga, 543050, Pamplona, 
Colombia. 
 
ABSTRACT 
Surgical suturing is a fundamental procedure in clinical practice, used for tissue 
approximation and wound healing. Although its teaching is a routine part of medical 
education, it faces challenges such as the limited availability of controlled scenarios, the 
risks of practicing on real patients, and the subjective evaluation of skills. These 
limitations emphasize the need for technological tools that enable safe and objective 
training. 
This article presents the development of an artificial intelligence-based prototype for 
surgical suturing training, integrating kinematic sensors for data acquisition and a 
supervised classification model using support vector machines (SVM) to distinguish 
between expert and novice users. The system provides a realistic and safe practice 
environment, enhancing the teaching-learning process in surgery, reducing clinical risks, 
and strengthening the objective evaluation of surgical skills. 
KEYWORDS: Artificial intelligence, support vector machines, wearable device, surgical 
suture, surgical simulation, medical training, clinical skills assessment. 
 

1. INTRODUCTION 
 
Surgical suturing is one of the most relevant procedures in medical practice, as it enables 
tissue approximation and promotes proper wound healing. This technique is 
fundamental in general surgery and various specialties, since its correct execution reduces 
postoperative complications and fosters a faster patient recovery [1]. Nevertheless, the 
learning process of suturing presents multiple challenges, particularly in the context of 
training new healthcare professionals. 
Traditionally, training has been carried out on real patients, which entails risks associated 
with clinical safety, in addition to a strong dependence on direct instructor supervision. 
Recent studies have shown that nearly 20% of medical residents do not meet the basic 
standards in surgical skills, which is related to the reduced availability of practical hours 
and the subjectivity in assessment processes [2], [3]. This scenario highlights the need to 
implement safer, more objective, and reproducible strategies in the teaching of suturing 
procedures. 
The incorporation of simulation technologies has emerged as an effective alternative to 
strengthen learning in controlled environments, minimizing risks and promoting the 
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progressive acquisition of clinical skills [4]. Such tools allow for systematic repetition of 
procedures, immediate feedback, and the possibility of establishing objective 
performance metrics, thereby contributing to the training of both undergraduate students 
and surgical residents [5]. 
In recent years, artificial intelligence (AI) has gained relevance in the analysis of medical 
skills due to its ability to process large volumes of data and recognize patterns associated 
with human performance. Supervised classification algorithms, such as support vector 
machines (SVM), have been successfully applied to the identification of surgical gestures 
and the differentiation of expertise levels between experts and trainees [6], [7]. These 
techniques provide a solid framework for the implementation of training systems that 
reduce reliance on subjective evaluations. 
 
In this context, the development of an AI-based prototype for training in surgical 
suturing, specifically focused on the simple interrupted stitch, is proposed. The system 
combines kinematic sensors for acceleration, tilt, and angular velocity with signal 
acquisition and analysis software, allowing for the objective characterization of the 
executed movements. Subsequently, through a classification model, the distinction 
between expert users and trainees is established, thus providing a safe, realistic practice 
environment with quantitative feedback [8]. 
The purpose of this research is to contribute to the improvement of the teaching-learning 
process in surgery, strengthening medical education and reducing the risks associated 
with practice on real patients. In this way, the prototype is presented as an innovative 
tool that integrates clinical simulation with intelligent data analysis, in line with current 
trends in medical education and bioengineering [9]. 

 
2. MATERIALS AND METHODS 

 
The study is classified as quasi-experimental [10], with a comparative approach. The main 
objective was to evaluate the effectiveness of a system based on sensors and artificial 
intelligence (AI) algorithms to classify performance in the suturing procedure between 
two groups of participants: experts and novices. 
For this purpose, data were collected using a wearable wristband equipped with 
acceleration, tilt, and angular velocity sensors, which were employed to capture time 
series [11] during the execution of the surgical suturing procedure. 
The recorded signals were subsequently processed and used to train an artificial 
intelligence algorithm, with the aim of classifying the participants’ performance according 
to their level of expertise. The analysis focused on comparing the classifier’s results in 
distinguishing between both groups. 
2.1 Prototype Design 
The prototype developed for surgical suturing training was oriented toward the emulation 
of the simple interrupted stitch, considered the basic wound closure technique. The 
system is composed of: 

• A suturing prosthesis, designed to reproduce the anatomical conditions of the skin 
and soft tissues. 

• A signal acquisition module integrating kinematic sensors. 

• Specialized software responsible for processing and analyzing the collected data. 
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The prosthesis was made of polymeric materials that simulate the resistance and elasticity 
of the skin, allowing for needle insertion and suture thread traction. To ensure stability 
during practice procedures, it was mounted on a rigid base. 
2.1.1 Suturing Prosthesis. 
For this study, prostheses provided by the Canadian company ProxSIMity Inc. were used. 
Figure 1 shows the model employed, designed with polymeric materials that reproduce 
the texture and resistance of soft tissues, allowing repeated insertion of the surgical needle 
and traction of the suture thread. 
The prosthesis features an external surface that simulates the skin and a lower support 
that provides stability during the procedure, preventing displacements that could affect 
signal recording. This configuration ensures homogeneous training conditions and 
structural resistance against repeated use. 
Furthermore, the modularity of the model facilitates its replacement after multiple trials, 
offering a reproducible, safe, and suitable environment for the systematic practice of the 
suturing technique.. 

 
Figure 1. Suturing prosthesis. Source: ProxSIMity. 
2.1.2 Description of the Wearable Device 
 
The wearable device used in this research corresponds to a wristband equipped with 
acceleration, tilt, and angular velocity sensors, as shown in Figure 2. This device, supplied 
by the Canadian company ProxSIMity Inc., is placed on both wrists of the participants 
and enables real-time data collection during the execution of the surgical procedure. 
 

 
Figure 2. Wearable device integrated with sensors. Source: ProxSIMity.. 
 
Through its sensors, the system records variations in tilt along the X, Y, and Z axes, as 
well as the acceleration and angular velocity of movements on these axes. This 
information is transmitted via Bluetooth technology [12] to a computer, where the data 
are stored in .csv format for further analysis. 
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For connection management and data acquisition, a specific software was developed in 
Unity [13]. The interface allows establishing communication with the wristband through 
Bluetooth, starting the signal collection, pausing the acquisition, and saving the records, 
as illustrated in Figure 3. 

 
Figure 3. Connection interface functionalities. Source: Own elaboration. 
 
2.2 Experimental Procedure 
2.2.1 Data Acquisition and Labeling 
Specific tests of the surgical suturing procedure were carried out with the aim of 
collecting comparative data between two groups of participants: experts and trainees. 
These data were subsequently used for training the artificial intelligence model. 
The participants were organized as follows: 

• Expert group: physicians, nurses, and faculty members from the medicine, nursing, 
and related programs at the University of Pamplona. 

• Trainee group: students from the medicine, nursing, and related programs of the same 
institution. 
In total, tests were conducted with 10 participants, evenly distributed: 5 experts (surgeons 
or instructors with suturing experience) and 5 novices (students in training). Each 
participant performed 5 complete procedures, resulting in a total of 50 samples: 25 from 
experts and 25 from novices. All tests were stored and labeled, ensuring an adequate class 
balance for the subsequent AI model training phase. 
During data collection, the wristbands equipped with sensors were placed on the 
participants, and the prosthesis was prepared following a standardized protocol that 
included the following steps: 
a. Material delivery: the participant received the needle holder and forceps required to 
perform the suture stitch. 
b. Start of data capture: once ready, the participant pressed the button on the sensor 
wristband to activate signal acquisition. 
c. Execution of the suture: the participant performed the simple interrupted stitch, 
finishing with knot tying and thread cutting. 
d. End of data capture: upon completing the stitch, the button on the wristband was 
pressed again to stop data recording. 
e. Result verification: it was confirmed that the stitch had been correctly executed 
according to the expected level of expertise. 
f. Sample labeling: finally, the procedure was recorded in the acquisition software and 
labeled according to the corresponding category (expert or novice). 
2.2.2 Exploratory Data Analysis. 
The data collected during the tests were organized and processed into a structured dataset 
using analysis tools such as DataFrames in Python. This dataset included: 
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• Accelerations: The three components (X, Y, Z) recorded by the accelerometer, 
reflecting the linear movements of the needle holder during the suturing procedure. 

• Angular velocities: The rotational values obtained from the gyroscope on the three 
axes, describing orientation and rotation changes of the surgical instrument during the 
procedure. 

• Tilt angles: Represented the real-time inclination of the needle holder, allowing 
analysis of stability and movement control in each sample. 
After loading the data, an integrity check was performed to ensure that no missing or 
inconsistent values were present. Subsequently, time series were plotted for each variable 
with the objective of visually exploring their behavior. 
Figures 4, 5, and 6 present a sample of the signals captured by the prototype’s sensors, 
showing the acceleration graphs on the X, Y, and Z axes, as well as the gyroscope and 
tilt signals on the same axes. 
In each graph, the signals correspond to one of the repetitions performed by each 
participant during the test. The signals represented in blue correspond to individuals 
classified as Experts, while the signals in red correspond to individuals classified as 
Novices. 

 
Figure 4. Sample of signals obtained, acceleration sensor. Source: Own elaboration. 

 
Figure 5. Sample of signals obtained, gyroscope. Source: Own elaboration. 

 
Figure 6. Sample of signals obtained, tilt sensor. Source: Own elaboration. 
 
The graphical record of the time series shows high variability in the data, even for samples 
within the same category, making it highly complex to identify clear patterns or evident 
differences between experts and novices through visual inspection. 
These characteristics observed in the time-series samples highlight the need to address 
these issues using more advanced processing and analysis techniques, such as feature 
extraction and the application of artificial intelligence models, to discern relevant 
information and build an effective classification model. 
It also became evident that the collected samples were not of the same length, since the 
duration of each procedure varied depending on the skill, experience, and execution pace 
of each participant. This heterogeneity in signal length represents a major challenge for 
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the development of artificial intelligence models, as most machine learning algorithms 
require input data to have a uniform and consistent structure. 
This is because AI algorithms—particularly those based on neural networks or 
supervised learning methods—typically operate under the assumption that input data 
have fixed dimensionality. When samples have different lengths, additional preprocessing 
is required to adapt them into a compatible format, which may introduce distortions or 
loss of relevant information. 
Regarding variable-length time series, [14] points out that textbooks dedicated to 
multivariate time series classification problems rarely address the challenge posed by 
differences in series length. However, this issue is common in real-world applications. 
The study proposes three approaches to handle this situation: truncation, data padding, 
and missing value estimation. 
This problem is also addressed in detail in [15], with a particular emphasis on multivariate 
time series. That study explores various data imputation methods, including deep learning 
techniques, applied to five healthcare datasets. The authors provide a comprehensive 
review of recent methods for imputing multivariate time series, focusing on those based 
on deep learning and published within the last five years. 
Finally, this variability in signal duration can mask key patterns that distinguish experts 
from novices, since differences in execution pace and procedure length may not be 
directly related to the participant’s skill, but rather to other factors such as caution, 
personal methodology, or even the inherent complexity of the task itself. Therefore, the 
unequal size of the samples complicates the technical processing of the data and may 
affect the model’s ability to generalize and learn effectively. 
2.2.3 Feature Extraction. 
After obtaining the DataFrames, feature extraction [16] was performed on both statistical 
and signal-related parameters for each of the sensors, using the Python library NumPy 
[17]. 
This method is widely used in time series analysis [18], particularly in biomedical 
applications. In these cases, signals are often noisy and complex; therefore, feature 
extraction helps reduce noise and highlight relevant patterns [19]. This process 
transforms raw signals into a set of numerical descriptors that summarize their temporal, 
statistical, or frequency behavior, thereby facilitating the identification of meaningful 
patterns. 
The problem detailed in the previous section regarding variability in signal length was 
addressed through feature extraction, which allowed for normalization of such 
differences. 
When statistical and time-domain features are extracted, a more homogeneous 
representation of the data is obtained. This reduces the influence of individual variations 
and enables classification algorithms to focus on the relevant patterns of the signal. As a 
result, an improvement in the model’s accuracy is expected. 
In this case, the extracted features are listed in Table 1: 
Tabla 1. Extracted features. 

Name Equation 
Meaning or 
Application 

Mean μ = (1/n) ∑ xᵢ 

Average of the 
values; 
represents the 
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central 
tendency. 

Standard 
deviation 

σ = 

√[(1/n) ∑ (xᵢ - μ)²] 

Measures the 
spread of the 
data relative to 
the mean. 

Mean 
absolute 
deviation 
(MAD) 

MAD = 

(1/n) ∑ |xᵢ - μ| 

Average 
absolute 
deviations from 
the mean. 

Minimum 
value 

min(x) 
Lowest value in 
the signal. 

Máximum 
value 

max(x) 
Highest value in 
the signal. 

Range 
(max-min) 

max(x) - min(x) 
Total range of 
the signal. 

Median mediana(x) 

Central value of 
the ordered 
signal; less 
sensitive to 
outliers. 

Median 
absolute 
deviation 
(MAD_med) 

MAD_med = 

(1/n) ∑ |xᵢ - mediana(x)| 

Dispersion with 
respect to the 
median. 

Interquartile 
range (IQR) 

IQR = Q3 - Q1 

Dispersion 
between the 
first and third 
quartile. 

Count of 
negative 
values 

∑ (xᵢ < 0) 

Number of 
values below 
zero. 

Count of 
positive 
values 

∑ (xᵢ > 0) 

Number of 
values above 
zero. 

Count of 
values above 
the mean 

∑ (xᵢ > μ) 

Frequency of 
values greater 
than the mean. 

Number of 
peaks 

peaks(x) 

Number of local 
maxima; useful 
for analyzing 
repetitive 
patterns. 

Skewness skew(x) 
Degree of 
symmetry in the 
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signal 
distribution. 

Kurtosis kurt(x) 

Concentration 
level of values 
relative to the 
mean. 

Energy E = ∑ xᵢ² 

Measure of the 
signal’s total 
power. 

Source. Own work. 
 
Each of these features was calculated individually for each sensor: acceleration on the X, 
Y, and Z axes; gyroscope on the X, Y, and Z axes; and tilt on the X, Y, and Z axes. 

 
Figure 7. DataFrames resulting from the feature extraction process. Source: Own 
elaboration. 
This process produced nine independent DataFrames, one for each sensor, as shown in 
Figure 7. Each DataFrame has dimensions of 50×16 (50 trials and 16 features). In 
addition, a consolidated DataFrame was generated, combining all sensors, with 
dimensions of 50×144. 
2.2.4 Application of the Principal Component Analysis (PCA) Technique. 
In order to reduce the dimensionality of the data while preserving as much information 
as possible, Principal Component Analysis (PCA) was applied to each of the DataFrames 
obtained after feature extraction. The use of PCA facilitates visualization, accelerates the 
training process of classification models, and helps mitigate issues associated with 
multicollinearity or redundancy among variables. 
The effectiveness of PCA in dimensionality reduction and improvement of classification 
performance has been widely documented in the scientific literature. For example, in 
study [20], it was demonstrated that applying PCA to EEG signals for automatic sleep 
stage detection allowed the models to maintain or even improve classification accuracy 
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while reducing computational load. Similarly, in research [21], the performance of linear 
dimensionality reduction techniques, including PCA, was evaluated in the classification 
of cardiac arrhythmias, showing that PCA contributed to improved sensitivity and F-
score of the models used. 
Through the application of this technique, the original set of 16 features per sensor was 
projected onto a new lower-dimensional space, composed of two principal components 
selected according to their ability to preserve the largest possible proportion of the total 
data variance. This procedure was implemented using the PCA function from Python’s 
sklearn.decomposition module [22]. 
As a result, nine DataFrames were obtained, consistent with what was previously 
described, each with dimensios of 50×2 (50 samples and 2 principal components). 
Table 2 presents the percentages of variance explained by the first two principal 
components, obtained through Principal Component Analysis (PCA), for each of the 
sensors considered. The values corresponding to the first and second components are 
reported, along with the total accumulated variance percentage explained by both. This 
information is essential for evaluating the effectiveness of the dimensionality reduction 
process, as it allows verification that the selected components retain most of the relevant 
information for the subsequent classification task. 
 
Tabla 2. Percentage of variance explained by the first two principal components, 
according to the source sensor. 

Sensor Component 1 (%) Component 2 (%) Total Variance (%) 

Acceleration X 65,64 33,23 98,87 

Acceleration Y 74,93 21,61 96,54 

Acceleration Z 73,69 24,71 98,4 

Gyroscope X 91,62 7,64 99,26 

Gyroscope Y 65,78 23,3 89,08 

Gyroscope Z 59,62 36,42 96,04 

Tilt X 87,32 10,92 98,24 

Tilt Y 73,74 15,18 88,92 

Tilt Z 98,72 0,92 99,64 

Combined sensors 89,38 6 96,23 

Source: Own elaboration. 
 
As can be observed in Table 2, in all cases the first two components retained between 
88% and 100% of the original variance, justifying their use as a reduced representation 
of the data without significant information loss. 
In conclusion, as shown in Figure 8, a total of 20 DataFrames were generated: ten with 
the original features extracted from each sensor and ten with their respective reduced 
representations through PCA. These datasets were used as inputs for the classification 
models evaluated in this study. 
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Figura 8. Consolidated DataFrames. Source: Own elaboration. 
 
2.2.5 Artificial Intelligence Models. 
The objective of the artificial intelligence model was to develop a system capable of 
classifying users according to their level of experience in performing the surgical suturing 
procedure, distinguishing between expert individuals and trainees (novices). For this 
purpose, two models based on supervised learning techniques were implemented. 
From the data collected through sensors integrated into the wearable wristband devices, 
and after the corresponding preprocessing, structuring into DataFrames, and labeling of 
the samples, a Support Vector Machine (SVM) neural-type model was trained and 
evaluated. 
Support Vector Machines (SVMs) are supervised machine learning algorithms widely 
used, among other fields, in biomedical and health Big Data analysis for classification and 
regression tasks. Their ability to handle high-dimensional data and detect complex 
patterns makes this technique a valuable tool in bioinformatics, clinical medicine, and 
health data analysis [23]. 
SVM models [24], [25] work by finding a hyperplane that separates different classes with 
the maximum margin in a feature space. For non-linear data, kernel functions are used 
to project the data into a higher-dimensional space where they can be linearly separated. 
This makes the algorithm effective for solving complex problems in areas such as 
bioinformatics and pattern recognition. 
Figure 10 presents an illustrative example of the application of a Support Vector Machine 
(SVM) with a non-linear RBF kernel for data classification.  
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Figure 10. Illustration of the operation of a Support Vector Machine (SVM) with RBF 
kernel for non-linear classification. Source: Own elaboration. 
In the first panel, the samples from two different classes are shown, with the support 
vectors highlighted by green circles. These correspond to the critical data points that 
determine the position of the decision boundary. 
The second panel shows the optimal decision boundary (solid black line) obtained by the 
model, as well as the margins (dashed black lines) that maximize the separation between 
classes. 
The colored regions represent the areas of the feature space assigned to each class by the 
classifier. This visualization demonstrates the ability of the SVM to transform the original 
space using kernel functions, enabling non-linear class separation and highlighting the 
fundamental role of support vectors in defining the optimal hyperplane.  
2.2.5.1 SVM Model Specification. 
The classification model implemented in this study corresponds to a Support Vector 
Machine (SVM), widely used in binary classification problems due to its ability to generate 
robust decision boundaries even in high-dimensional spaces [26]. 
The SVM was trained using a radial basis function (RBF) kernel, selected for its capacity 
to capture non-linear relationships among the features extracted from the sensors. The 
regularization parameter (C) and the kernel shape parameter (γ) were tuned through k-
fold cross-validation (k = 5) on the training set, selecting the values that maximized 
classifier accuracy. 
A stratified partition of the data was employed, assigning 70% for training and 30% for 
validation, while maintaining balance between the “expert” and “novice” classes. All 
feature vectors were normalized through standardization (z-score), computed from the 
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statistical parameters of the training set. To ensure reproducibility of results, the training 
process was conducted with a fixed random seed. 
The primary performance metric considered was accuracy. Complementary metrics such 
as precision, recall (sensitivity), F1-score, and confusion matrices on the validation set 
were also reported to provide a comprehensive evaluation of classifier performance. 
The model was implemented in Python using the scikit-learn library, which allowed for 
standardized hyperparameter tuning, training, and evaluation. 
2.2.6 Classifier Model Performance Evaluation. 
As shown in Figure 11, the performance of the SVM model was evaluated considering 
both overall accuracy and complementary metrics that enable a more detailed analysis of 
the classifier’s behavior. 
A stratified partition of the data was applied (70% for training and 30% for validation), 
preserving the balance between the “expert” and “novice” classes. The validation set 
remained completely independent throughout the process, avoiding bias in 
hyperparameter selection. 
The model was evaluated individually by sensor (acceleration, gyroscope, and tilt) and by 
each of their axes (X, Y, Z), as well as by combining the three axes (XYZ) for each sensor. 
This approach allowed identification of which modalities provide greater discriminative 
power in classifying the participants’ level of expertise. 

 
Figure 11. Summary of the model performance evaluation process. Source: Own 
elaboration. 
 

3. RESULTS 
 

3.1 Classifier Model Performance by Sensor 
In order to evaluate the performance of the model in the surgical suturing emulation 
process, the accuracy rates obtained when training and validating the SVM classifier using 
the data from each sensor individually, as well as from their combinations, were analyzed. 
Two approaches were considered: 

• The original features obtained after the feature extraction process. 

• The features reduced through Principal Component Analysis (PCA), with the purpose 
of observing the effect of dimensionality reduction on the model’s performance. 
The results obtained are presented in Figure 12, Figure 13, and Figure 14, where the 
performances achieved in the training and test sets for each sensor and configuration are 
illustrated. 



Cultura. International Journal of Philosophy of Culture and Axiology      21(12s)/2024  

 

 

239 

 

 
Figure 12. Performance of the classifier models on the training set. Source: Own 
elaboration. 

 
Figure 13. Performance of the classifier models on the test set. Source: Own 
elaboration. 
3.2 Combination of Sensors and Selective Exclusion. 
When using all sensors in combination, the SVM model achieved 90% accuracy on the 
training set with both the original features and PCA. In the test set, a precision of 94% 
was obtained in both configurations, confirming that the fusion of signals provides a 
more robust view of the procedure and allows the model to maintain high performance 
in classifying users’ level of expertise. 
Complementarily, the strategy of selectively excluding less informative sensors was 
evaluated. In this scenario, the classifier maintained practically identical behavior to that 
obtained with all sensors: 90% accuracy in training and 100% in testing, both when 
considering the original features and when applying PCA. This finding suggests that 
suppressing signals with lower contribution does not compromise the system’s predictive 
capacity and may even simplify the model by reducing dimensionality without sacrificing 
performance. 
In comparative terms, the most outstanding results were achieved with selective 
exclusion, reaching maximum accuracy in the testing phase. Nonetheless, both sensor 
combination and the exclusion of low-contribution sensors demonstrated that 
information integration or reduction should aim at maximizing model generalization 
without unnecessarily increasing complexity. 
3.3 Heatmap of the SVM Model 
To intuitively visualize the classifier’s performance, heatmaps were created from the 
confusion matrices generated in the most representative scenarios of the SVM model. 
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These plots allow for a quick identification of the proportion of correct classifications 
and errors made by the classifier when distinguishing between expert and novice users. 
Procedure. For each sensor configuration (individual, full combination, and selective 
exclusion), the corresponding confusion matrix was calculated on the validation set. 
Subsequently, the values were represented in a heatmap using color coding, where correct 
classifications are concentrated on the main diagonal and errors appear in the off-
diagonal cells. 
 

 
Figure 14. Heatmap of accuracy on the test set. Source: Own elaboration. 
 

4. DISCUSSION 
 

The results obtained in this study demonstrate that the SVM model is an effective tool 
for classifying the level of expertise in performing the suturing procedure. The sensor-
by-sensor evaluation showed that, although each modality provides relevant information, 
there are notable differences in the discriminative capacity of the axes. In particular, 
gyroscopes and tilt sensors achieved high performance values, while some acceleration 
axes presented more modest results. This finding is consistent with the literature, where 
it has been reported that kinematic and postural parameters are often more representative 
for characterizing fine motor skills [27], [28]. 
The combination of signals proved to be a highly beneficial approach, as it allowed the 
integration of information from different modalities and reached 94% accuracy in testing, 
surpassing the performance obtained with individual sensors. Likewise, the strategy of 
selectively excluding less informative sensors maintained or even improved performance 
levels, achieving up to 100% accuracy in testing in some scenarios. This suggests that not 
all signals contribute significantly to the classification process. This finding highlights the 
importance of applying feature selection criteria to optimize the balance between 
accuracy and computational complexity. 
The application of PCA enabled dimensionality reduction without sacrificing 
performance and even improved generalization in certain cases. This observation is key 
in contexts where the system needs to be implemented on portable devices or in clinical 
practice environments, since a reduced number of features decreases computational costs 
and facilitates model scalability. 
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When compared with other related studies in the field of clinical skills training [29], [30], 
the results obtained in this work are consistent: machine learning models applied to 
kinematic data from wearable sensors can differentiate between experts and novices with 
high accuracy. Moreover, the robustness demonstrated by SVM when integrating or 
excluding signals suggests that this approach could be extended to other surgical 
procedures requiring precision and manual coordination, broadening its applicability in 
medical training. 
Overall, the findings reaffirm that the use of artificial intelligence, supported by inertial 
sensors and data processing techniques, is a promising strategy for strengthening the 
training of surgical skills in simulation environments. The system’s ability to accurately 
discriminate the level of expertise provides an objective means of feedback that can 
complement traditional instructor-based evaluation. 
 

5. CONCLUSIONS 
  
The SVM model demonstrated high overall performance, achieving precision levels 
above 90% in sensor combination scenarios and up to 100% accuracy in testing when 
applying the strategy of selectively excluding less informative signals. 
The combination of sensors showed that the fusion of modalities provides 
complementary information, enhancing the robustness of the classifier compared to the 
use of individual sensors. The exclusion of less relevant sensors allowed the model’s 
performance to be maintained while reducing dimensionality, which favors 
computational efficiency and simplifies practical implementation. 
The application of PCA contributed to improved generalization in certain scenarios, 
showing that reducing data redundancies does not compromise predictive capacity but 
can even enhance it. The results obtained confirm the feasibility of using wearable 
sensors and AI algorithms as support tools in clinical skills training, by providing an 
objective means of feedback on users’ performance levels. 
The proposed system constitutes an innovative and efficient alternative for training in 
suturing procedures, with potential to be extended to other contexts of medical 
education. The use of SVM, together with feature selection and dimensionality reduction 
strategies, provides a solid approach for discriminating between different levels of 
expertise, strengthening practical teaching through controlled simulation environments. 
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