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ABSTRACT

Surgical suturing is a fundamental procedure in clinical practice, used for tissue
approximation and wound healing. Although its teaching is a routine part of medical
education, it faces challenges such as the limited availability of controlled scenarios, the
risks of practicing on real patients, and the subjective evaluation of skills. These
limitations emphasize the need for technological tools that enable safe and objective
training,.

This article presents the development of an artificial intelligence-based prototype for
surgical suturing training, integrating kinematic sensors for data acquisition and a
supervised classification model using support vector machines (SVM) to distinguish
between expert and novice users. The system provides a realistic and safe practice
environment, enhancing the teaching-learning process in surgery, reducing clinical risks,
and strengthening the objective evaluation of surgical skills.

KEYWORDS: Artificial intelligence, support vector machines, wearable device, surgical
suture, surgical simulation, medical training, clinical skills assessment.

1. INTRODUCTION

Surgical suturing is one of the most relevant procedures in medical practice, as it enables
tissue approximation and promotes proper wound healing. This technique is
fundamental in general surgery and various specialties, since its correct execution reduces
postoperative complications and fosters a faster patient recovery [1]. Nevertheless, the
learning process of suturing presents multiple challenges, particularly in the context of
training new healthcare professionals.

Traditionally, training has been carried out on real patients, which entails risks associated
with clinical safety, in addition to a strong dependence on direct instructor supervision.
Recent studies have shown that nearly 20% of medical residents do not meet the basic
standards in surgical skills, which is related to the reduced availability of practical hours
and the subjectivity in assessment processes [2], [3]. This scenario highlights the need to
implement safer, more objective, and reproducible strategies in the teaching of suturing
procedures.

The incorporation of simulation technologies has emerged as an effective alternative to
strengthen learning in controlled environments, minimizing risks and promoting the
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progressive acquisition of clinical skills [4]. Such tools allow for systematic repetition of
procedures, immediate feedback, and the possibility of establishing objective
performance metrics, thereby contributing to the training of both undergraduate students
and surgical residents [5].

In recent years, artificial intelligence (Al) has gained relevance in the analysis of medical
skills due to its ability to process large volumes of data and recognize patterns associated
with human performance. Supervised classification algorithms, such as support vector
machines (SVM), have been successfully applied to the identification of surgical gestures
and the differentiation of expertise levels between experts and trainees [6], [7]. These
techniques provide a solid framework for the implementation of training systems that
reduce reliance on subjective evaluations.

In this context, the development of an Al-based prototype for training in surgical
suturing, specifically focused on the simple interrupted stitch, is proposed. The system
combines kinematic sensors for acceleration, tilt, and angular velocity with signal
acquisition and analysis software, allowing for the objective characterization of the
executed movements. Subsequently, through a classification model, the distinction
between expert users and trainees is established, thus providing a safe, realistic practice
environment with quantitative feedback [8].

The purpose of this research is to contribute to the improvement of the teaching-learning
process in surgery, strengthening medical education and reducing the risks associated
with practice on real patients. In this way, the prototype is presented as an innovative
tool that integrates clinical simulation with intelligent data analysis, in line with current
trends in medical education and bioengineering [9].

2. MATERIALS AND METHODS

The study is classified as quasi-experimental [10], with a comparative approach. The main
objective was to evaluate the effectiveness of a system based on sensors and artificial
intelligence (Al) algorithms to classify performance in the suturing procedure between
two groups of participants: experts and novices.

For this purpose, data were collected using a wearable wristband equipped with
acceleration, tilt, and angular velocity sensors, which were employed to capture time
series [11] during the execution of the surgical suturing procedure.

The recorded signals were subsequently processed and used to train an artificial
intelligence algorithm, with the aim of classifying the participants’ performance according
to their level of expertise. The analysis focused on comparing the classifier’s results in
distinguishing between both groups.

2.1 Prototype Design

The prototype developed for surgical suturing training was oriented toward the emulation
of the simple interrupted stitch, considered the basic wound closure technique. The
system is composed of:

e A suturing prosthesis, designed to reproduce the anatomical conditions of the skin
and soft tissues.

e A signal acquisition module integrating kinematic sensors.
e Specialized software responsible for processing and analyzing the collected data.
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The prosthesis was made of polymeric materials that simulate the resistance and elasticity
of the skin, allowing for needle insertion and suture thread traction. To ensure stability
during practice procedures, it was mounted on a rigid base.

2.1.1 Suturing Prosthesis.

For this study, prostheses provided by the Canadian company ProxSIMity Inc. were used.
Figure 1 shows the model employed, designed with polymeric materials that reproduce
the texture and resistance of soft tissues, allowing repeated insertion of the surgical needle
and traction of the suture thread.

The prosthesis features an external surface that simulates the skin and a lower support
that provides stability during the procedure, preventing displacements that could affect
signal recording. This configuration ensures homogeneous training conditions and
structural resistance against repeated use.

Furthermore, the modularity of the model facilitates its replacement after multiple trials,
offering a reproducible, safe, and suitable environment for the systematic practice of the
suturing technique..

Figure 1. Suturing prosthesis. Source: ProxSIMity.
2.1.2 Description of the Wearable Device

The wearable device used in this research corresponds to a wristband equipped with
acceleration, tilt, and angular velocity sensors, as shown in Figure 2. This device, supplied
by the Canadian company ProxSIMity Inc., is placed on both wrists of the participants
and enables real-time data collection during the execution of the surgical procedure.

)

Figure 2. Wearable device integrated with sensors. Source: ProxSIMity..

Through its sensors, the system records variations in tilt along the X, Y, and Z axes, as
well as the acceleration and angular velocity of movements on these axes. This
information is transmitted via Bluetooth technology [12] to a computer, where the data
are stored in .csv format for further analysis.
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For connection management and data acquisition, a specific software was developed in
Unity [13]. The interface allows establishing communication with the wristband through
Bluetooth, starting the signal collection, pausing the acquisition, and saving the records,
as illustrated in Figure 3.

Figure 3. Connection interface functionalities. Source: Own elaboration.

2.2 Experimental Procedure

2.2.1 Data Acquisition and Labeling

Specific tests of the surgical suturing procedure were carried out with the aim of
collecting comparative data between two groups of participants: experts and trainees.
These data were subsequently used for training the artificial intelligence model.

The participants were organized as follows:

e Expert group: physicians, nurses, and faculty members from the medicine, nursing,
and related programs at the University of Pamplona.

e Trainee group: students from the medicine, nursing, and related programs of the same
institution.

In total, tests were conducted with 10 participants, evenly distributed: 5 experts (surgeons
or instructors with suturing experience) and 5 novices (students in training). Each
participant performed 5 complete procedures, resulting in a total of 50 samples: 25 from
experts and 25 from novices. All tests were stored and labeled, ensuring an adequate class
balance for the subsequent Al model training phase.

During data collection, the wristbands equipped with sensors were placed on the
participants, and the prosthesis was prepared following a standardized protocol that
included the following steps:

a. Material delivery: the participant received the needle holder and forceps required to
perform the suture stitch.

b. Start of data capture: once ready, the participant pressed the button on the sensor
wristband to activate signal acquisition.

c. Execution of the suture: the participant performed the simple interrupted stitch,
finishing with knot tying and thread cutting.

d. End of data capture: upon completing the stitch, the button on the wristband was
pressed again to stop data recording.

e. Result verification: it was confirmed that the stitch had been correctly executed
according to the expected level of expertise.

f. Sample labeling: finally, the procedure was recorded in the acquisition software and
labeled according to the corresponding category (expert or novice).

2.2.2 Exploratory Data Analysis.

The data collected during the tests were organized and processed into a structured dataset
using analysis tools such as DataFrames in Python. This dataset included:
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e Accelerations: The three components (X, Y, Z) recorded by the accelerometer,
reflecting the linear movements of the needle holder during the suturing procedure.

e Angular velocities: The rotational values obtained from the gyroscope on the three
axes, describing orientation and rotation changes of the surgical instrument during the
procedure.

e Tilt angles: Represented the real-time inclination of the needle holder, allowing
analysis of stability and movement control in each sample.

After loading the data, an integrity check was performed to ensure that no missing or
inconsistent values were present. Subsequently, time series were plotted for each variable
with the objective of visually exploring their behavior.

Figures 4, 5, and 6 present a sample of the signals captured by the prototype’s sensors,
showing the acceleration graphs on the X, Y, and Z axes, as well as the gyroscope and
tilt signals on the same axes.

In each graph, the signals correspond to one of the repetitions performed by each
participant during the test. The signals represented in blue correspond to individuals
classified as Experts, while the signals in red correspond to individuals classified as
Novices.
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Flgure 4. Sample of signals obtalned acceleration sensor. Source: Own elaboratlon
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Figure 5. Sample of 51gnals obtained, gyroscope. Source Own elaboration.
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Flgure 6. Sample of 51gnals obtained, tilt sensor. Source Own elaboratlon

The graphical record of the time series shows high variability in the data, even for samples
within the same category, making it highly complex to identify clear patterns or evident
differences between experts and novices through visual inspection.

These characteristics observed in the time-series samples highlight the need to address
these issues using more advanced processing and analysis techniques, such as feature
extraction and the application of artificial intelligence models, to discern relevant
information and build an effective classification model.

It also became evident that the collected samples were not of the same length, since the
duration of each procedure varied depending on the skill, experience, and execution pace
of each participant. This heterogeneity in signal length represents a major challenge for
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the development of artificial intelligence models, as most machine learning algorithms
require input data to have a uniform and consistent structure.

This is because Al algorithms—particularly those based on neural networks or
supervised learning methods—typically operate under the assumption that input data
have fixed dimensionality. When samples have different lengths, additional preprocessing
is required to adapt them into a compatible format, which may introduce distortions or
loss of relevant information.

Regarding variable-length time series, [14] points out that textbooks dedicated to
multivariate time series classification problems rarely address the challenge posed by
differences in series length. However, this issue is common in real-world applications.
The study proposes three approaches to handle this situation: truncation, data padding,
and missing value estimation.

This problem is also addressed in detail in [15], with a particular emphasis on multivariate
time series. That study explores various data imputation methods, including deep learning
techniques, applied to five healthcare datasets. The authors provide a comprehensive
review of recent methods for imputing multivariate time series, focusing on those based
on deep learning and published within the last five years.

Finally, this variability in signal duration can mask key patterns that distinguish experts
from novices, since differences in execution pace and procedure length may not be
directly related to the participant’s skill, but rather to other factors such as caution,
personal methodology, or even the inherent complexity of the task itself. Therefore, the
unequal size of the samples complicates the technical processing of the data and may
affect the model’s ability to generalize and learn effectively.

2.2.3 Feature Extraction.

After obtaining the DatalFrames, feature extraction [16] was performed on both statistical
and signal-related parameters for each of the sensors, using the Python library NumPy
[17].

This method is widely used in time series analysis [18], particularly in biomedical
applications. In these cases, signals are often noisy and complex; therefore, feature
extraction helps reduce noise and highlight relevant patterns [19]. This process
transforms raw signals into a set of numerical descriptors that summarize their temporal,
statistical, or frequency behavior, thereby facilitating the identification of meaningful
patterns.

The problem detailed in the previous section regarding variability in signal length was
addressed through feature extraction, which allowed for normalization of such
differences.

When statistical and time-domain features are extracted, a more homogeneous
representation of the data is obtained. This reduces the influence of individual variations
and enables classification algorithms to focus on the relevant patterns of the signal. As a
result, an improvement in the model’s accuracy is expected.

In this case, the extracted features are listed in Table 1:

Tabla 1. Extracted features.

. Meaning or
Name Equation App]ica;gion
Average of the
Mean w=~1/0) xi values;
represents the
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central
tendency.
Measures the
Standard o= spread of the
deviation VI /0) Y (xi - W data relative to
the mean.
Mean Average
absolute MAD = absolute
deviation (1/n) Y |xi-p] deviations from
(MAD) the mean.
Minimum . Lowest value in
min(x) .
value the signal.
Miaximum Highest value in
max(X) .
value the signal.
Range ) Total range of
(maf—min) max(x) - min(x) the signal%
Central value of
the ordered
Median mediana(x) signal; less
sensitive to
outliers.
Median Dispersion with
absolute MAD_med = P h
deviation | (1/n) ¥ |xi - mediana(x)| | ec 00
(MAD_med) )
Dispersion
Interquartile _ between the
range (IQR) QR =Q3-Ql first and third
quartile.
Count of Number of
negative Y (xi <0) values below
values Zero.
Count of Number of
positive Y (xi > 0) values above
values Zero.
Count of Frequency of
values above |} (x; > p) values greater
the mean than the mean.
Number of local
maxima; useful
Il::;rl?sber of peaks(x) for agglyzing
repetitive
patterns.
Skewness skew(x) Degree of

symmetry in the
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signal
distribution.
Concentration
level of values
relative to the
mean.
Measure of the
Energy E =) x signal’s total

powet.

Kurtosis kurt(x)

Source. Own work.

Each of these features was calculated individually for each sensor: acceleration on the X,

Y, and Z axes; gyroscope on the X, Y, and Z axes; and tilt on the X, Y, and Z axes.
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Figure 7. DataFrames resulting from the feature extraction process. Source: Own
elaboration.

This process produced nine independent DataFrames, one for each sensor, as shown in
Figure 7. Each DataFrame has dimensions of 50x16 (50 trials and 16 features). In
addition, a consolidated DataFrame was generated, combining all sensors, with
dimensions of 50x144.

2.2.4 Application of the Principal Component Analysis (PCA) Technique.

In order to reduce the dimensionality of the data while preserving as much information
as possible, Principal Component Analysis (PCA) was applied to each of the DataFrames
obtained after feature extraction. The use of PCA facilitates visualization, accelerates the
training process of classification models, and helps mitigate issues associated with
multicollinearity or redundancy among variables.

The effectiveness of PCA in dimensionality reduction and improvement of classification
performance has been widely documented in the scientific literature. For example, in
study [20], it was demonstrated that applying PCA to EEG signals for automatic sleep
stage detection allowed the models to maintain or even improve classification accuracy
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while reducing computational load. Similarly, in research [21], the performance of linear
dimensionality reduction techniques, including PCA, was evaluated in the classification
of cardiac arrhythmias, showing that PCA contributed to improved sensitivity and F-
score of the models used.

Through the application of this technique, the original set of 16 features per sensor was
projected onto a new lower-dimensional space, composed of two principal components
selected according to their ability to preserve the largest possible proportion of the total
data variance. This procedure was implemented using the PCA function from Python’s
sklearn.decomposition module [22].

As a result, nine DataFrames were obtained, consistent with what was previously
described, each with dimensios of 50X2 (50 samples and 2 principal components).
Table 2 presents the percentages of variance explained by the first two principal
components, obtained through Principal Component Analysis (PCA), for each of the
sensors considered. The values corresponding to the first and second components are
reported, along with the total accumulated variance percentage explained by both. This
information is essential for evaluating the effectiveness of the dimensionality reduction
process, as it allows verification that the selected components retain most of the relevant
information for the subsequent classification task.

Tabla 2. Percentage of variance explained by the first two principal components,
according to the source sensor.

Sensor Component 1 (%) | Component 2 (%) | Total Variance (%)
Acceleration X 65,64 33,23 98,87
Acceleration Y 74,93 21,61 96,54
Acceleration Z 73,69 24,71 98,4
Gyroscope X 91,62 7,64 99,26
Gyroscope Y 05,78 23,3 89,08
Gyroscope Z 59,62 36,42 96,04
Tilt X 87,32 10,92 98,24
TiltY 73,74 15,18 88,92
Tilt Z 98,72 0,92 99,64
Combined sensors | 89,38 6 96,23

Source: Own elaboration.

As can be observed in Table 2, in all cases the first two components retained between
88% and 100% of the original variance, justifying their use as a reduced representation
of the data without significant information loss.

In conclusion, as shown in Figure 8, a total of 20 DataFrames were generated: ten with
the original features extracted from each sensor and ten with their respective reduced
representations through PCA. These datasets were used as inputs for the classification
models evaluated in this study.
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Figura 8. Consolidated DataFrames. Source: Own elaboration.

2.2.5 Artificial Intelligence Models.

The objective of the artificial intelligence model was to develop a system capable of
classifying users according to their level of experience in performing the surgical suturing
procedure, distinguishing between expert individuals and trainees (novices). For this
purpose, two models based on supervised learning techniques were implemented.

From the data collected through sensors integrated into the wearable wristband devices,
and after the corresponding preprocessing, structuring into DataFrames, and labeling of
the samples, a Support Vector Machine (SVM) neural-type model was trained and
evaluated.

Support Vector Machines (SVMs) are supervised machine learning algorithms widely
used, among other fields, in biomedical and health Big Data analysis for classification and
regression tasks. Their ability to handle high-dimensional data and detect complex
patterns makes this technique a valuable tool in bioinformatics, clinical medicine, and
health data analysis [23].

SVM models [24], [25] work by finding a hyperplane that separates different classes with
the maximum margin in a feature space. For non-linear data, kernel functions are used
to project the data into a higher-dimensional space where they can be linearly separated.
This makes the algorithm effective for solving complex problems in areas such as
bioinformatics and pattern recognition.

Figure 10 presents an illustrative example of the application of a Support Vector Machine
(SVM) with a non-linear RBF kernel for data classification.

236



Cultura. International Journal of Philosophy of Culture and Axiology  21(12s)/2024

Datos y Viectores de Soporte

L e Cpaed

' . W (e Shpte % O
Lao %% L4 Q vectores de soporte
dg @ ol
ors 1 s é
®
030 ...d {y "‘£ ®
5 R / ® MG L
03s c \Ntrri-w-.
> @ @ -~ LJ
000 13 [C] @ G/Q/ @ . $ e
@ I ? c@ 0 b4
a2 & @ e
3 0 0 ® oo % »
0.50 OB

-13 -2 -0 (1] ns 0 18 ) in

La SVM con kernel RBF proyects datos a un espacy de mayor dimenscn para separar clases no lineales !
| Los vectores de scpore (Crculos verdes) son os puntas criticos que definen & frontera y s margenes ]

Figure 10. Illustration of the operation of a Support Vector Machine (SVM) with RBF
kernel for non-linear classification. Source: Own elaboration.

In the first panel, the samples from two different classes are shown, with the support
vectors highlighted by green circles. These correspond to the critical data points that
determine the position of the decision boundary.

The second panel shows the optimal decision boundary (solid black line) obtained by the
model, as well as the margins (dashed black lines) that maximize the separation between
classes.

The colored regions represent the areas of the feature space assigned to each class by the
classifier. This visualization demonstrates the ability of the SVM to transform the original
space using kernel functions, enabling non-linear class separation and highlighting the
fundamental role of support vectors in defining the optimal hyperplane.

2.2.5.1 SVM Model Specification.

The classification model implemented in this study corresponds to a Support Vector
Machine (SVM), widely used in binary classification problems due to its ability to generate
robust decision boundaries even in high-dimensional spaces [26].

The SVM was trained using a radial basis function (RBF) kernel, selected for its capacity
to capture non-linear relationships among the features extracted from the sensors. The
regularization parameter (C) and the kernel shape parameter (y) were tuned through k-
fold cross-validation (k = 5) on the training set, selecting the values that maximized
classifier accuracy.

A stratified partition of the data was employed, assigning 70% for training and 30% for
validation, while maintaining balance between the “expert” and “novice” classes. All
feature vectors were normalized through standardization (z-score), computed from the
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statistical parameters of the training set. To ensure reproducibility of results, the training
process was conducted with a fixed random seed.

The primary performance metric considered was accuracy. Complementary metrics such
as precision, recall (sensitivity), F1-score, and confusion matrices on the validation set
were also reported to provide a comprehensive evaluation of classifier performance.
The model was implemented in Python using the scikit-learn library, which allowed for
standardized hyperparameter tuning, training, and evaluation.

2.2.6 Classifier Model Performance Evaluation.

As shown in Figure 11, the performance of the SVM model was evaluated considering
both overall accuracy and complementary metrics that enable a more detailed analysis of
the classifier’s behavior.

A stratified partition of the data was applied (70% for training and 30% for validation),
preserving the balance between the “expert” and “novice” classes. The validation set
remained completely independent throughout the process, avoiding bias in
hyperparameter selection.

The model was evaluated individually by sensor (acceleration, gyroscope, and tilt) and by
each of their axes (X, Y, Z), as well as by combining the three axes (XYZ) for each sensor.
This approach allowed identification of which modalities provide greater discriminative

power in classifying the participants’ level of expertise.
Feature Support Vector Machine (SVM)
Data partition :0% ety
0% validation
Main metric Accuracy
Sensor analysis Exclude less informative sensors
Optimization Reduce dimensonality, maintain accuracy

Figure 11. Summary of the model performance evaluation process. Source: Own
elaboration.

3. RESULTS

3.1 Classifier Model Performance by Sensor

In order to evaluate the performance of the model in the surgical suturing emulation
process, the accuracy rates obtained when training and validating the SVM classifier using
the data from each sensor individually, as well as from their combinations, were analyzed.
Two approaches were considered:

e The original features obtained after the feature extraction process.

e The features reduced through Principal Component Analysis (PCA), with the purpose
of observing the effect of dimensionality reduction on the model’s performance.

The results obtained are presented in Figure 12, Figure 13, and Figure 14, where the
performances achieved in the training and test sets for each sensor and configuration are
illustrated.
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Figure 12. Performance of the classifier models on the training set. Source: Own
elaboration.
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Figure 13. Performance of the classifier models on the test set. Source: Own
elaboration.

3.2 Combination of Sensors and Selective Exclusion.

When using all sensors in combination, the SVM model achieved 90% accuracy on the
training set with both the original features and PCA. In the test set, a precision of 94%
was obtained in both configurations, confirming that the fusion of signals provides a
more robust view of the procedure and allows the model to maintain high performance
in classifying users’ level of expertise.

Complementarily, the strategy of selectively excluding less informative sensors was
evaluated. In this scenario, the classifier maintained practically identical behavior to that
obtained with all sensors: 90% accuracy in training and 100% in testing, both when
considering the original features and when applying PCA. This finding suggests that
suppressing signals with lower contribution does not compromise the system’s predictive
capacity and may even simplify the model by reducing dimensionality without sacrificing
performance.

In comparative terms, the most outstanding results were achieved with selective
exclusion, reaching maximum accuracy in the testing phase. Nonetheless, both sensor
combination and the exclusion of low-contribution sensors demonstrated that
information integration or reduction should aim at maximizing model generalization
without unnecessarily increasing complexity.

3.3 Heatmap of the SVM Model

To intuitively visualize the classifier’s performance, heatmaps were created from the
confusion matrices generated in the most representative scenarios of the SVM model.
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These plots allow for a quick identification of the proportion of correct classifications
and errors made by the classifier when distinguishing between expert and novice users.
Procedure. For each sensor configuration (individual, full combination, and selective
exclusion), the corresponding confusion matrix was calculated on the validation set.
Subsequently, the values were represented in a heatmap using color coding, where correct
classifications are concentrated on the main diagonal and errors appear in the off-
diagonal cells.

SVM accuracy heatmap by sensor (training and test)
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Figure 14. Heatmap of accuracy on the test set. Source: Own elaboration.

4. DISCUSSION

The results obtained in this study demonstrate that the SVM model is an effective tool
for classifying the level of expertise in performing the suturing procedure. The sensor-
by-sensor evaluation showed that, although each modality provides relevant information,
there are notable differences in the discriminative capacity of the axes. In particular,
gyroscopes and tilt sensors achieved high performance values, while some acceleration
axes presented more modest results. This finding is consistent with the literature, where
it has been reported that kinematic and postural parameters are often more representative
for characterizing fine motor skills [27], [28].

The combination of signals proved to be a highly beneficial approach, as it allowed the
integration of information from different modalities and reached 94% accuracy in testing,
surpassing the performance obtained with individual sensors. Likewise, the strategy of
selectively excluding less informative sensors maintained or even improved performance
levels, achieving up to 100% accuracy in testing in some scenarios. This suggests that not
all signals contribute significantly to the classification process. This finding highlights the
importance of applying feature selection criteria to optimize the balance between
accuracy and computational complexity.

The application of PCA enabled dimensionality reduction without sacrificing
performance and even improved generalization in certain cases. This observation is key
in contexts where the system needs to be implemented on portable devices or in clinical
practice environments, since a reduced number of features decreases computational costs
and facilitates model scalability.
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When compared with other related studies in the field of clinical skills training [29], [30],
the results obtained in this work are consistent: machine learning models applied to
kinematic data from wearable sensors can differentiate between experts and novices with
high accuracy. Moreover, the robustness demonstrated by SVM when integrating or
excluding signals suggests that this approach could be extended to other surgical
procedures requiring precision and manual coordination, broadening its applicability in
medical training.

Overall, the findings reaffirm that the use of artificial intelligence, supported by inertial
sensors and data processing techniques, is a promising strategy for strengthening the
training of surgical skills in simulation environments. The system’s ability to accurately
discriminate the level of expertise provides an objective means of feedback that can
complement traditional instructor-based evaluation.

5. CONCLUSIONS

The SVM model demonstrated high overall performance, achieving precision levels
above 90% in sensor combination scenarios and up to 100% accuracy in testing when
applying the strategy of selectively excluding less informative signals.

The combination of sensors showed that the fusion of modalities provides
complementary information, enhancing the robustness of the classifier compared to the
use of individual sensors. The exclusion of less relevant sensors allowed the model’s
performance to be maintained while reducing dimensionality, which favors
computational efficiency and simplifies practical implementation.

The application of PCA contributed to improved generalization in certain scenarios,
showing that reducing data redundancies does not compromise predictive capacity but
can even enhance it. The results obtained confirm the feasibility of using wearable
sensors and Al algorithms as support tools in clinical skills training, by providing an
objective means of feedback on users’ performance levels.

The proposed system constitutes an innovative and efficient alternative for training in
suturing procedures, with potential to be extended to other contexts of medical
education. The use of SVM, together with feature selection and dimensionality reduction
strategies, provides a solid approach for discriminating between different levels of
expertise, strengthening practical teaching through controlled simulation environments.
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