

Integrated Safety Protocols: Enhancing Patient Security and Communication Across Emergency Radiology, Nursing Care, and Medical Documentation

Khaled Ayed Al-Sahli¹, Fatimah Mousa Jaber Alshehri², Amal Mashabab Al Bogami³, Mutlaq Hadyan Al-Mutairi⁴, Jameel Saud Saleh Alsubhi⁵, Manal Mazen Almutairi⁶, Ghadeer Ghurman Alamri⁷, Lama Abdulrahman Alzomia⁸, Abdulaziz Mohammed Aljuhayri⁹, Sahar Nasser Alshahrani¹⁰, Abdullah Mohammed Radhi AlSurayhi¹¹, Emad Salah Al-hejaili¹², Mohammed Hulayyil Ateeq Alharbi¹³, Amal Abdullah AlFouzan¹⁴, Hanan Hassan Jalwai Alanezi¹⁵

¹ Emergency Medical Technician (EMT), Emergency and Health Disaster Center Administration, Health Affairs Directorate, Al-Madinah Al Munawwarah

² Radiological Technology, Tabuk, Tabuk Health Cluster

³ Nursing Technician, Al-Muhammadiyah Health, Center, Northern Sector, Riyadh third Health Cluster

⁴ Radiology Technician, Al-Aziziyah Specialized Dental Center, Hafr Al-Batin Health Complex

⁵ Technician Nursing, MOH Branch-Madinah,

⁶ Health Security Officer, Prince Sultan Bin Abdulaziz Health Center, Riyadh First Health Cluster

⁷ Health Security Officer, Prince Sultan Bin Abdulaziz Health Center, Riyadh First Health Cluster

⁸ Health Security Officer, Eskan Al-Mather Health Center, Riyadh First Health Cluster

⁹ CT scan Diagnostic Radiology, King Abdulaziz medical city, Riyadh

¹⁰ Nursing, Third Riyadh Health Cluster

¹¹ Nursing, King Salman Medical City, Mental Health Hospital,

¹² Nursing, Branch of the Ministry of Health, Madina Region

¹³ Nursing Specialist, Al-Amal Psychiatric Hospital, King Salman Medical City

¹⁴ Senior Specialist Psychological and Mental Health Nursing, MOH - Main office, General Administration of Mental Health and Social Services

¹⁵ Nurse, Public Health to Promote School Health,

Accepted: 10-07-2024 Published: 10-09-2024

Abstract

This comprehensive study examines the multifaceted approach required to enhance patient safety and communication in radiology departments, with particular focus on emergency settings. Drawing from established literature and clinical evidence, it explores the intersection of radiological practices, nursing care protocols, medical documentation standards, and security measures. The article outlines critical areas including radiation safety, contrast media risks, magnetic resonance imaging hazards, ultrasound safety considerations, and effective risk communication strategies. Furthermore, it provides practical frameworks for implementing integrated safety protocols that bridge departments, enhance interdisciplinary communication, and prioritize patient-centered care. This holistic approach

addresses the complex challenges faced in modern healthcare settings while emphasizing ethical considerations, regulatory compliance, and continuous quality improvement.

INTRODUCTION

The modern healthcare landscape demands an increasingly integrated approach to patient safety, particularly in complex settings such as emergency radiology departments. The convergence of advanced imaging technologies, rapid patient throughput, diverse clinical staff, and comprehensive documentation requirements creates a multifaceted environment where safety protocols must be meticulously designed and implemented (Young & Smith, 2022). This study explores the essential components of integrated safety protocols that enhance patient security and facilitate effective communication across emergency radiology, nursing care, and medical documentation.

The radiological department represents a unique intersection of high technology, potential biological hazards, and critical patient care moments. As imaging modalities continue to advance technologically, the potential risks associated with these procedures require corresponding evolution in safety measures (Hermenau & Young, 2023). Simultaneously, the nursing care interface with radiology presents its own set of challenges in patient monitoring, medication administration, and procedural support. The comprehensive documentation of these interactions forms the foundation of continuity of care and risk management.

Effective communication serves as the common thread linking these disparate aspects of healthcare delivery. Clear, accurate, and timely information exchange between radiologists, technologists, nurses, physicians, and patients is essential for preventing adverse events and ensuring optimal outcomes (Wegwarth et al., 2017). This article examines the critical points of interface between these stakeholders and proposes structured approaches to enhance safety and communication across these domains.

Fundamentals of Patient Rights and Ethical Considerations

Patient Autonomy and Informed Consent

The cornerstone of ethical medical practice is respect for patient autonomy, which is particularly relevant in the context of radiological procedures that may carry potential risks. As outlined by Olejarczyk and Young (2024), patients have the fundamental right to make informed decisions about their care, including diagnostic imaging. The process of obtaining informed consent involves comprehensive disclosure of procedure details, associated risks, benefits, and alternatives in language accessible to the patient.

In emergency radiology settings, the challenge of balancing immediate clinical needs with informed consent requirements can be particularly acute. Time-sensitive situations may necessitate modified consent procedures, but the ethical principle of respect for autonomy remains paramount (Young & Wagner, 2024). Documentation of consent discussions, particularly regarding radiation exposure, contrast media risks, and procedural details, should be meticulously maintained within the medical record.

Ethical Frameworks in Radiological Practice

Medical ethics in radiology extends beyond informed consent to encompass principles of beneficence, non-maleficence, justice, and confidentiality. Young and Wagner (2024) emphasize that radiological practice requires constant ethical

evaluation, particularly when weighing diagnostic benefits against potential harms such as radiation exposure or contrast media reactions.

Quality standards in healthcare increasingly incorporate ethical considerations as core components. Young and Smith (2022) note that person-centered care represents an ethical imperative that should guide all aspects of radiological practice. This approach recognizes patients as active participants in their care rather than passive recipients of medical interventions, emphasizing dignity, respect, and individualized consideration of patient needs and preferences.

Radiation Safety: Biological Effects and Protection Measures

Mechanisms of Radiation Damage

Ionizing radiation, utilized in modalities such as conventional radiography and computed tomography, interacts with biological tissues through complex mechanisms that can potentially result in cellular damage. At the molecular level, radiation can cause direct DNA damage through double-strand breaks (Corry & Cole, 1968; Veatch & Okada, 1969) and indirect damage through the generation of free radicals that subsequently interact with cellular components (Dizdaroglu & Bergtold, 1986).

The mechanism of dissociative electron attachment, as described by Ma et al. (2019), represents a significant pathway for radiation-induced DNA damage. Low-energy electrons generated during radiation exposure can attach to DNA components, leading to the formation of transient negative ions that subsequently dissociate, resulting in strand breaks. Kumar et al. (2019) further elaborate that these mechanisms can be exploited for therapeutic purposes in radiation oncology while requiring careful mitigation in diagnostic imaging.

Non-targeted effects of ionizing radiation, including bystander effects and genomic instability, present additional considerations for radiation protection. Morgan and Sowa (2015) describe how cells not directly exposed to radiation may exhibit damage due to intercellular signaling from irradiated cells, suggesting that traditional dose-response models may not fully capture radiobiological risk.

Radiation Protection Principles and Practices

The fundamental principles of radiation protection—justification, optimization, and dose limitation—provide the framework for safe radiological practice. Each imaging study must be justified by weighing potential diagnostic benefits against radiation risks, optimized to use the lowest dose necessary for diagnostic quality (ALARA principle: As Low As Reasonably Achievable), and conducted within established dose limits for patients and staff.

Technical considerations for radiation dose management include equipment calibration, quality assurance programs, and appropriate beam collimation. Dydula et al. (2019) discuss the importance of system calibration and quality control in minimizing unnecessary radiation exposure. Takata and Begum (2008) highlight the significance of accurate air kerma measurements for proper radiation dosimetry, ensuring that exposure levels remain within safe parameters.

Practical radiation protection measures in emergency settings include:

- Proper shielding using lead aprons, thyroid shields, and structural barriers
- Appropriate filtration and collimation to limit the radiation field
- Selection of technical factors (kVp, mAs) appropriate for the specific examination and patient size
- Use of digital imaging systems with post-processing capabilities that can reduce the need for repeat exposures

- Implementation of diagnostic reference levels (DRLs) to benchmark and optimize radiation doses

MRI Safety: Magnetic Fields, Radiofrequency Energy, and Acoustic Hazards

Physical Principles and Potential Hazards

Magnetic resonance imaging (MRI) utilizes powerful magnetic fields, radiofrequency pulses, and gradient fields to generate diagnostic images without ionizing radiation. While free from radiation risks, MRI presents unique safety challenges. The development of MRI technology, dating back to Rabi's pioneering work (Rabi et al., 1938), has been accompanied by evolving safety protocols to address specific hazards associated with this modality.

The static magnetic field, typically ranging from 0.5 to 3.0 Tesla in clinical systems, exerts powerful attractive forces on ferromagnetic objects. Schenck (2000) details how these forces can transform common hospital items into dangerous projectiles, potentially causing serious injuries to patients or staff within the scanner room. Additionally, the static field can interfere with implanted medical devices such as pacemakers, requiring comprehensive pre-examination screening.

Radiofrequency (RF) energy employed during MRI sequences can induce heating of conductive materials and patient tissues. Shellock (2000) explains that RF heating can be particularly problematic with implanted devices, external monitors, or even clothing with conductive materials. Tokue et al. (2019) report a case of unexpected MRI-induced burns from metallic fibers in jogging pants, highlighting the importance of thorough patient preparation and screening for non-obvious conductive materials.

The rapid switching of gradient magnetic fields generates significant acoustic noise within the MRI environment. Tkach et al. (2014) measured noise levels exceeding 100 dB in some MRI sequences, presenting potential hearing hazards for patients, particularly in vulnerable populations such as neonates. Ehrhardt et al. (1997) describe how gradient switching can also induce peripheral nerve stimulation, experienced as mild tingling or twitching sensations during certain MRI sequences.

MRI Safety Protocols and Implementation

Comprehensive MRI safety protocols begin with zone-based access restrictions, as recommended by professional guidelines. These typically include four progressive security zones, with Zone IV (the scanner room) having the most stringent access controls. Personnel entering Zone IV should undergo thorough screening and training regarding MRI safety hazards.

Patient screening represents a critical component of MRI safety. Standardized questionnaires addressing implanted devices, surgical history, and potential metallic foreign bodies must be administered and reviewed by qualified personnel before patient entry into the MRI environment. Documentation of screening results within the medical record provides an essential safety reference and medicolegal protection.

Hearing protection is essential given the acoustic hazards identified by Masterson et al. (2016). Earplugs or headphones should be provided to all patients undergoing MRI examinations, with special consideration for pediatric patients who may require additional comfort measures and monitoring during scanning procedures.

Emergency protocols specific to the MRI environment must address unique situations such as quench events (rapid helium boil-off), fire response in a high-magnetic-field environment, and medical emergencies requiring rapid patient removal from the scanner. These protocols should be regularly practiced through

simulation exercises involving radiology, nursing, and emergency response personnel.

Ultrasound Safety: Mechanical and Thermal Effects

Biophysical Considerations

Ultrasound imaging, while generally considered among the safest diagnostic modalities, nonetheless requires careful attention to potential bioeffects. Diagnostic ultrasound employs high-frequency sound waves that interact with tissues through mechanical and thermal mechanisms. Understanding these interactions is essential for safe clinical application, particularly in emergency settings where time pressures may compete with safety considerations.

The mechanical effects of ultrasound include acoustic cavitation, wherein ultrasound energy creates microscopic gas bubbles in tissues that subsequently oscillate and potentially collapse, generating localized high temperatures and pressures. Lamberti et al. (1997) describe how these mechanical effects are related to the acoustic output of the ultrasound system, particularly the mechanical index (MI), which serves as a safety indicator for potential cavitation effects.

Thermal effects result from the absorption of ultrasound energy by tissues, causing temperature elevation. Ter Haar (2011) explains that the thermal index (TI) provides a metric for estimating potential temperature increases during ultrasound examinations. Different tissues absorb ultrasound energy at varying rates, with bone demonstrating particularly high absorption characteristics that can lead to significant localized heating when in the ultrasound beam path.

Ultrasound Safety Implementation

Clinical implementation of ultrasound safety principles follows the ALARA concept, utilizing the lowest acoustic output necessary to obtain diagnostic information. Real-time display of MI and TI values on modern ultrasound equipment allows operators to monitor potential bioeffects during examinations. Special consideration should be given to sensitive applications such as obstetrical imaging, ophthalmic examinations, and pediatric studies.

Safety protocols should address:

- Appropriate selection of transducer frequencies and examination presets
- Monitoring and minimizing dwell time in sensitive tissues
- Awareness of thermal index variations in different examination modes
- Proper transducer cleaning and maintenance to prevent cross-contamination
- Documentation of ultrasound safety parameters in the medical record

Contrast Media Safety: Reactions, Nephrotoxicity, and Extravasation

Adverse Reactions to Iodinated and Gadolinium-Based Contrast Media

Contrast-enhanced studies provide essential diagnostic information but introduce additional safety considerations. Iodinated contrast media used in computed tomography and fluoroscopic procedures can trigger adverse reactions ranging from mild cutaneous manifestations to life-threatening anaphylactoid responses. Cha et al. (2019) conducted a large multicenter study documenting hypersensitivity reactions in 0.73% of patients receiving iodinated contrast, with severe reactions occurring in approximately 0.01% of administrations.

Similarly, gadolinium-based contrast agents (GBCAs) used in MRI examinations can cause adverse reactions, though typically at lower rates than iodinated media. McDonald et al. (2019) reviewed nearly 300,000 GBCA administrations, finding acute adverse events in 0.36% of injections, with severe reactions in 0.004% of cases. These findings emphasize the need for systematic screening, preparation for

potential reactions, and immediate access to emergency response protocols and medications.

Contrast-Induced Nephropathy and Nephrogenic Systemic Fibrosis

Beyond acute hypersensitivity reactions, contrast media present potential nephrotoxic effects that require careful risk assessment and management. Contrast-induced nephropathy (CIN), characterized by acute kidney injury following contrast administration, represents a significant concern particularly in patients with pre-existing renal impairment. Nash et al. (2002) identified contrast media exposure as the third leading cause of hospital-acquired renal insufficiency, highlighting the clinical significance of this complication.

Risk stratification based on estimated glomerular filtration rate (eGFR) provides a framework for identifying patients at elevated risk for CIN. Davenport et al. (2013) demonstrated that patients with eGFR less than 30 mL/min/1.73m² face substantially increased risk following iodinated contrast exposure, necessitating consideration of alternative imaging approaches or prophylactic measures.

Nephrogenic systemic fibrosis (NSF), a serious condition associated with gadolinium exposure in patients with severe renal dysfunction, represents another contrast-related concern. Marckmann et al. (2006) described the association between certain gadolinium formulations and this devastating condition, which led to significant changes in clinical practice regarding GBCA administration in renally impaired patients.

Extravasation Management

Contrast media extravasation, the inadvertent leakage of contrast material into surrounding tissues during injection, presents another safety challenge in radiological practice. Dykes et al. (2015) analyzed a national data registry of contrast extravasations, finding an overall incidence of approximately 0.45% for CT examinations. Wang et al. (2007) documented that while most extravasations result in minor complications, severe injuries including compartment syndrome, skin necrosis, and tissue damage can occasionally occur.

Management protocols for extravasation should include:

- Immediate cessation of injection upon suspected extravasation
- Assessment of extravasation volume and affected area
- Application of warm or cold compresses as appropriate for the contrast type
- Elevation of the affected extremity
- Documentation of the event, including photographs when significant
- Follow-up evaluation for patients with large-volume extravasations or concerning symptoms

Runge et al. (2002) and Al-Benna et al. (2013) emphasize the importance of prompt recognition and appropriate management of extravasation injuries to minimize potential tissue damage. Standardized documentation of extravasation events facilitates quality improvement initiatives and provides essential information for patient follow-up and potential medicolegal purposes.

Risk Communication in Radiological Practice

Principles of Effective Risk Communication

Effective communication regarding radiological risks represents an essential component of ethical practice and informed consent. Wegwarth et al. (2017) demonstrate that evidence-based risk information can significantly influence patient decision-making regarding medical procedures, including diagnostic imaging. This finding underscores the importance of accurate, understandable risk communication in the radiological setting.

Carey et al. (2018) identified patient preferences regarding risk communication format, finding that many patients prefer visual representations of risk alongside verbal explanations. This multimodal approach to risk communication addresses varying health literacy levels and learning styles, enhancing comprehension of complex radiological concepts.

The concept of numeracy—the ability to understand and work with numbers—significantly impacts risk comprehension. Wegwarth and Gigerenzer (2018) describe how statistical illiteracy among both physicians and patients can create barriers to informed decision-making. Presenting risk information in accessible formats, such as natural frequencies rather than conditional probabilities, can enhance understanding for patients across numeracy levels.

Communicating Radiation Risks

Radiation risk communication presents particular challenges due to the technical nature of dosimetry concepts and the probabilistic nature of radiation effects. Conveying radiation doses in meaningful terms requires translation from technical measurements (such as milliSieverts) to more accessible comparisons, such as equivalent background radiation periods or comparative risk activities.

The framing of radiation risks significantly influences perception and decision-making. Malenka et al. (1993) demonstrated how presentation of the same risk information as relative versus absolute risk dramatically altered risk perception. Similarly, Krosnick et al. (2017) found widespread misunderstanding of health risk magnitudes, highlighting the importance of contextualizing radiological risks within familiar frameworks.

Population dose studies, such as those conducted by Hart and Wall (2004) and Fazel et al. (2009), provide important context for radiation risk discussions. These studies document that medical radiation exposure represents a significant and growing component of population radiation dose, emphasizing the importance of appropriate justification and optimization of radiological examinations.

Documentation of Risk Communication

Comprehensive documentation of risk discussions serves multiple purposes, including:

- Supporting informed consent requirements
- Providing reference for future care decisions
- Establishing medicolegal protection
- Facilitating quality improvement initiatives

Coyle and Gillies (2020) review effective methods for improving understanding in risk communication contexts, emphasizing the importance of structured approaches and verification of comprehension. Documentation should reflect not only that risk information was provided but also the specific content discussed and the patient's demonstrated understanding of key concepts.

Integrating Safety Across Departments: Practical Approaches

Interdisciplinary Collaboration Models

Effective patient safety in radiology requires seamless collaboration across departmental boundaries. Structured collaborative models that integrate radiological, nursing, and medical records expertise provide comprehensive safety coverage throughout the patient journey. These models can be formalized through:

- Joint safety committees with representation from radiology, nursing, and medical records departments
- Shared safety protocols with clear delineation of responsibilities

- Integrated incident reporting systems that capture events across departmental interfaces
- Regular interdisciplinary safety rounds focused on system vulnerabilities
- Combined quality improvement initiatives addressing cross-departmental safety challenges

Implementation of Universal Protocols

The Universal Protocol for Preventing Wrong Site, Wrong Procedure, and Wrong Person Surgery provides a valuable framework that can be adapted to radiological procedures. Key elements include:

- Pre-procedure verification of patient identity, procedure, site, and documentation
- Site marking for applicable interventional procedures
- "Time out" immediately before procedure initiation to confirm all critical elements

Adaptation of these protocols to emergency radiology settings requires consideration of time constraints while maintaining essential safety checks. Abbreviated protocols suitable for emergency contexts should be developed collaboratively with input from all stakeholders, including radiologists, technologists, nurses, and emergency physicians.

Electronic Medical Record Integration

Comprehensive electronic medical record (EMR) systems can enhance safety through:

- Integrated ordering systems with decision support for appropriate imaging selection
- Automated alerts for potential contraindications (implanted devices, contrast allergies, renal dysfunction)
- Standardized documentation templates for procedures, contrast administration, and radiation doses
- Real-time access to relevant clinical information during imaging procedures
- Closed-loop communication systems for critical findings and follow-up recommendations

Addressing Imaging Overutilization

Appropriate Use Criteria and Decision Support

The overutilization of diagnostic imaging represents both a safety concern and a resource allocation challenge. Rao and Levin (2012) highlight the significant growth in imaging utilization over recent decades, raising concerns about unnecessary radiation exposure, potential incidental findings requiring follow-up, and healthcare costs.

Implementation of appropriate use criteria through clinical decision support systems provides a structured approach to optimizing imaging utilization. Rezaei et al. (2020) evaluated the impact of the Radiology Support, Communication and Alignment Network, demonstrating significant reductions in potentially inappropriate imaging through systematic application of evidence-based ordering guidance.

Choosing Wisely Initiatives

The Choosing Wisely campaign has identified specific imaging scenarios that warrant careful consideration of necessity and potential alternatives. These recommendations, developed by professional societies including the American College of Radiology, provide concrete guidance for reducing unnecessary imaging while maintaining high-quality care.

Educational initiatives targeting both ordering clinicians and patients represent essential components of appropriate utilization efforts. Patients increasingly seek

involvement in healthcare decisions, and providing accessible information regarding imaging benefits, risks, and alternatives supports informed shared decision-making.

Quality Assurance and Continuous Improvement

Metrics for Safety Monitoring

Comprehensive safety monitoring requires defined metrics that capture both process adherence and outcome measures. Key indicators for radiological safety monitoring include:

- Radiation dose indices for common examinations compared to diagnostic reference levels
- Contrast media reaction and extravasation rates
- MRI safety screening compliance
- Adherence to timeout procedures for interventional cases
- Critical results communication timeliness
- Incident reporting rates and categories
- Patient satisfaction with communication and safety measures

Regular review of these metrics through structured quality assurance meetings provides the foundation for identifying improvement opportunities and measuring intervention effectiveness.

Just Culture and Incident Reporting

A just culture approach to safety incidents distinguishes between human error, at-risk behavior, and reckless behavior, applying appropriate responses to each category. This framework supports honest reporting of safety concerns without fear of inappropriate punishment, while maintaining accountability for deliberate violations of safety protocols.

Effective incident reporting systems should:

- Provide easy access for all staff members
- Allow anonymous reporting when appropriate
- Ensure timely review and feedback
- Focus on system improvements rather than individual blame
- Track trends and patterns across departments
- Close the loop with reporters regarding actions taken

Future Directions in Integrated Safety

Emerging Technologies and Safety Implications

Technological advancements in radiology continue to evolve, introducing new safety considerations that require proactive assessment and management. Artificial intelligence applications in image acquisition and interpretation present novel questions regarding decision support, error detection, and responsibility allocation. Automated protocols and dose optimization algorithms offer potential safety enhancements but require careful validation and monitoring during implementation.

Point-of-care testing integration with imaging workflows creates opportunities for improved patient assessment prior to contrast administration but necessitates clear protocols for result interpretation and action thresholds. Remote monitoring technologies enable enhanced patient observation during procedures but require definition of monitoring responsibilities and escalation pathways.

Research Priorities in Radiological Safety

Priority areas for future research in radiological safety include:

- Refined risk models for low-dose radiation exposure
- Optimal approaches for communicating complex risk information to diverse patient populations

- Effectiveness of various safety intervention bundles in emergency radiology settings
- Impact of integrated electronic systems on cross-departmental safety outcomes
- Development and validation of patient-reported safety experience measures specific to radiological procedures

CONCLUSION

Integrated safety protocols represent an essential framework for enhancing patient security and communication across emergency radiology, nursing care, and medical documentation. The complex interplay between technological, biological, and communication factors in the radiological environment necessitates a comprehensive approach that addresses potential hazards while maintaining efficient care delivery.

Successful implementation requires recognition that safety is not merely a departmental concern but rather a system-wide responsibility requiring collaboration across traditional boundaries. By developing shared protocols, communication pathways, and quality improvement processes, healthcare organizations can create a safety infrastructure that transcends departmental silos and provides comprehensive patient protection.

The ethical imperative to prioritize patient safety and autonomy demands continuous attention to emerging evidence, evolving technologies, and changing healthcare dynamics. Through systematic application of the principles and practices outlined in this article, healthcare facilities can enhance the safety and quality of radiological services while fostering a culture of transparent communication and continuous improvement.

References

1. Al-Benna, S., O'Boyle, C., & Holley, J. (2013). Extravasation injuries in adults. *ISRN Dermatology*, 2013, 856541.
2. Carey, M., Herrmann, A., Hall, A., Mansfield, E., & Fakes, K. (2018). Exploring health literacy and preferences for risk communication among medical oncology patients. *PLOS One*, 13(9), e0203988.
3. Cha, M. J., Kang, D. Y., Lee, W., Yoon, S. H., Choi, Y. H., Byun, J. S., Lee, J., Kim, Y. H., Choo, K. S., Cho, B. S., Jeon, K. N., Jung, J. W., & Kang, H. R. (2019). Hypersensitivity reactions to iodinated contrast media: A multicenter study of 196,081 patients. *Radiology*, 293(1), 117–124.
4. Corry, P. M., & Cole, A. (1968). Radiation-induced double-strand scission of the DNA of mammalian metaphase chromosomes. *Radiation Research*, 36(3), 528–543.
5. Coyle, M., & Gillies, K. (2020). A systematic review of risk communication in clinical trials: How does it influence decisions to participate and what are the best methods to improve understanding in a trial context? *PLOS One*, 15(11), e0242239.
6. Davenport, M. S., Khalatbari, S., Cohan, R. H., Dillman, J. R., Myles, J. D., & Ellis, J. H. (2013). Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: Risk stratification using estimated glomerular filtration rate. *Radiology*, 268(3), 719–728.
7. Dizdaroglu, M., & Bergtold, D. S. (1986). Characterization of free radical-induced base damage in DNA at biologically relevant levels. *Analytical Biochemistry*, 156(1), 182–188.
8. Dydula, C., Belev, G., & Johns, P. C. (2019). Development and assessment of a multi-beam continuous-phantom-motion X-ray scatter projection imaging system. *Review of Scientific Instruments*, 90(3), 035104.

9. Dykes, T. M., Bhargavan-Chatfield, M., & Dyer, R. B. (2015). Intravenous contrast extravasation during CT: A national data registry and practice quality improvement initiative. *Journal of the American College of Radiology*, 12(2), 183–191.
10. Ehrhardt, J. C., Lin, C. S., Magnotta, V. A., Fisher, D. J., & Yuh, W. T. (1997). Peripheral nerve stimulation in a whole-body echo-planar imaging system. *Journal of Magnetic Resonance Imaging*, 7(2), 405–409.
11. Fazel, R., Krumholz, H. M., Wang, Y., Ross, J. S., Chen, J., Ting, H. H., Shah, N. D., Nasir, K., Einstein, A. J., & Nallamothu, B. K. (2009). Exposure to low-dose ionizing radiation from medical imaging procedures. *New England Journal of Medicine*, 361(9), 849–857.
12. Hart, D., & Wall, B. F. (2004). UK population dose from medical X-ray examinations. *European Journal of Radiology*, 50(3), 285–291.
13. Hermena, S., & Young, M. (2023). CT-scan image production procedures. In *StatPearls*. StatPearls Publishing.
14. Krosnick, J. A., Malhotra, N., Mo, C. H., Bruera, E. F., Chang, L., Pasek, J., & Thomas, R. K. (2017). Perceptions of health risks of cigarette smoking: A new measure reveals widespread misunderstanding. *PLOS One*, 12(8), e0182063.
15. Kumar, A., Becker, D., Adhikary, A., & Sevilla, M. D. (2019). Reaction of electrons with DNA: Radiation damage to radiosensitization. *International Journal of Molecular Sciences*, 20(16), 3998.
16. Lamberti, N., Caliano, G., Iula, A., & Pappalardo, M. (1997). A new approach for the design of ultrasono-therapy transducers. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 44(1), 77–84.
17. Ma, J., Kumar, A., Muroya, Y., Yamashita, S., Sakurai, T., Denisov, S. A., Sevilla, M. D., Adhikary, A., Seki, S., & Mostafavi, M. (2019). Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. *Nature Communications*, 10(1), 102.
18. Malenka, D. J., Baron, J. A., Johansen, S., Wahrenberger, J. W., & Ross, J. M. (1993). The framing effect of relative and absolute risk. *Journal of General Internal Medicine*, 8(10), 543–548.
19. Marckmann, P., Skov, L., Rossen, K., Dupont, A., Damholt, M. B., Heaf, J. G., & Thomsen, H. S. (2006). Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. *Journal of the American Society of Nephrology*, 17(9), 2359–2362.
20. Masterson, E. A., Themann, C. L., Luckhaupt, S. E., Li, J., & Calvert, G. M. (2016). Hearing difficulty and tinnitus among U.S. workers and non-workers in 2007. *American Journal of Industrial Medicine*, 59(4), 290–300.
21. McDonald, J. S., Hunt, C. H., Kolbe, A. B., Schmitz, J. J., Hartman, R. P., Maddox, D. E., Kallmes, D. F., & McDonald, R. J. (2019). Acute adverse events following gadolinium-based contrast agent administration. *Radiology*, 292(3), 620–627.
22. Morgan, W. F., & Sowa, M. B. (2015). Non-targeted effects induced by ionizing radiation. *Cancer Letters*, 356(1), 17–21.
23. Nash, K., Hafeez, A., & Hou, S. (2002). Hospital-acquired renal insufficiency. *American Journal of Kidney Diseases*, 39(5), 930–936.
24. Olejarczyk, J. P., & Young, M. (2024). Patient rights and ethics. In *StatPearls*. StatPearls Publishing.
25. Rabi, I. I., Zacharias, J. R., Millman, S., & Kusch, P. (1938). A new method of measuring nuclear magnetic moment. *Journal of Magnetic Resonance Imaging*, 2(2), 131–133.

26. Rao, V. M., & Levin, D. C. (2012). The overuse of diagnostic imaging and the Choosing Wisely initiative. *Annals of Internal Medicine*, 157(8), 574–576.
27. Rezaii, P. G., Fredericks, N., Lincoln, C. M., Hom, J., Willis, M., Burleson, J., et al. (2020). Assessment of the Radiology Support, Communication and Alignment Network. *Journal of the American College of Radiology*, 17(5), 597–605.
28. Runge, V. M., Dickey, K. M., Williams, N. M., & Peng, X. (2002). Local tissue toxicity from MR contrast extravasation. *Investigative Radiology*, 37(7), 393–398.
29. Schenck, J. F. (2000). Safety of strong, static magnetic fields. *Journal of Magnetic Resonance Imaging*, 12(1), 2–19.
30. Shellock, F. G. (2000). Radiofrequency energy-induced heating during MR procedures. *Journal of Magnetic Resonance Imaging*, 12(1), 30–36.
31. Takata, N., & Begum, A. (2008). Corrections to air kerma and exposure measured with free air ionisation chambers. *Radiation Protection Dosimetry*, 130(4), 410–418.
32. Ter Haar, G. (2011). Ultrasonic imaging: Safety considerations. *Interface Focus*, 1(4), 686–697.
33. Tkach, J. A., Li, Y., Pratt, R. G., Baroch, K. A., Loew, W., Daniels, B. R., et al. (2014). Characterization of acoustic noise in a neonatal MRI system. *Pediatric Radiology*, 44(8), 1011–1019.
34. Tokue, H., Tokue, A., & Tsushima, Y. (2019). Unexpected MRI burn injuries from jogging pants. *Radiology Case Reports*, 14(11), 1348–1351.
35. Veatch, W., & Okada, S. (1969). Radiation-induced breaks of DNA in cultured mammalian cells. *Biophysical Journal*, 9(3), 330–346.
36. Wang, C. L., Cohan, R. H., Ellis, J. H., Adusumilli, S., & Dunnick, N. R. (2007). Extravasation of nonionic iodinated contrast medium. *Radiology*, 243(1), 80–87.
37. Wegwarth, O., & Gigerenzer, G. (2018). Statistical illiteracy in physicians and patients. *Recent Results in Cancer Research*, 210, 207–221.
38. Wegwarth, O., Wagner, G. G., & Gigerenzer, G. (2017). Evidence-based information and cancer screening recommendations. *PLOS One*, 12(8), e0183024.
39. Young, M., & Smith, M. A. (2022). Standards and evaluation of healthcare quality, safety, and person-centered care. In *StatPearls*. StatPearls Publishing.
40. Young, M., & Wagner, A. (2024). Medical ethics. In *StatPearls*. StatPearls Publishing.